Драйвер для лед автолампы

Светодиодный драйвер для автомобильного светового оборудования

В настоящее время, в связи со стремлением владельцев старых автомобилей перевести световое оборудование с ламп накаливания на светодиоды, достаточно востребованными являются конструкции бюджетных драйверов для светодиодов различной мощности. Ключевым словом является «бюджетных», т.к. конструкций драйверов, выполненных на различных микросхемах, в Поднебесной выпускается видимо-невидимо. И в то же время, практически всем из них свойственны существенные недостатки, требующие квалифицированного вмешательства при их установке и подключении к ним светодиодов.

Обусловлено это тем, что светодиоды, в отличие от ламп накаливания, для своей работы требуют стабильного тока. Напряжение, падающее на светодиодах, является вторичным, справочным параметром, нужным только для подбора диапазона выходных напряжений соответствующего драйвера. Для стабилизации тока требуется его датчик, самым дешевым из которых является обычный резистивный токоизмерительный шунт (RS на Рис. 1), включаемый, как правило, между катодом светодиода и минусовой шиной питания драйвера.


Рис. 1 Схема обычного подключения светодиодов к неинвертирующему драйверу

В результате светодиод оказывается запитанным «плавающим» напряжением, не связанным непосредственно ни с плюсовой шиной питания, ни с корпусом автомобиля (являющимся минусовой шиной). А это вынуждает устанавливать драйвер в непосредственной близости от светодиодов, в наименее защищенном от влаги месте. Существуют, конечно, датчики тока плюсовой шины (например, MAX4080, MAX4081, LT494, LT1637, LT1672, LT1784, LTC2053, LTC6800, INA337 и т.п.) [1, 2]. Но вот их дефицитность и стоимость.

Читайте также:  Льдами какая часть речи

Кроме того, большинство драйверов имеют конфигурацию либо понижающего, либо повышающего импульсного преобразователя [3]. Для первых недопустимо, чтобы падение напряжения на нагрузке превысило минимальное питающее напряжение и наоборот для вторых.

Однако, наиболее про́клятым сочетанием является случай, когда падение напряжения на светодиодах находится в диапазоне колебаний питающего напряжения. Скажем, падение напряжения на кластере из четырех соединенных последовательно белых светодиодов с падением напряжения на каждом из них 3…3,3 В, составляет 12…13,2 В, что практически равно напряжению кислотного аккумулятора. В этом случае начинаются «танцы с бубном» с использованием конфигураций SEPIC либо Step Up-Down. Вызывает недоумение зашоренность конструкторов, напрочь выпускающих из виду такую конфигурацию, как инвертирующий преобразователь, способный обеспечить выходное напряжение независимо от значения входного. Нельзя исключить, что сдерживающим фактором может быть низкий КПД такой конфигурации, составляющий всего 60…70%.

Еще раз внимательно рассмотрим Рис. 1. Источник питающего напряжения является двухполюсником. Потребитель (светодиоды) также являются двухполюсником. В таком случае, какая принципиальная разница, как подключать друг к другу два двухполюсника. Лишь бы соблюсти правильную полярность протекания тока через светодиоды да обеспечить необходимое значение этого тока (рис. 2)!


Рис. 2 Схема подключения светодиодов к инвертирующему драйверу

При такой конфигурации драйвер инвертирует выходное напряжение относительно входного, запитывая светодиоды током отрицательной полярности. При этом анод светодиода(ов) непосредственно соединяется с массой автомобиля, а токоизмерительный шунт (RS) продолжает оставаться включенным в отрицательное плечо.

Как же такой «изврат» реализовать практически? Да еще и с использованием самых дешевых и широко распространенных компонентов. Возьмем за основу микросхему импульсного преобразователя напряжения на MC34063, стоимость которого составляет менее $0.20 (а в SMD корпусе — еще дешевле). А если поискать, то ее вообще можно выпаять бесплатно из устаревшей аппаратуры. Например, модемов, свичей, даже некоторых старых материнских плат.

Рассмотрим конфигурацию инвертирующего преобразователя (схема из даташита), сразу же умощненного внешним p-n-p транзистором, дабы не зависеть от максимально допустимого пикового тока внутреннего ключа микросхемы, составляющего всего 1,5 А (рис. 3).


Рис. 3 Базовая инвертирующая (Voltage Inverting) конфигурация импульсного преобразователя на основе микросхемы MC34063

Принцип стабилизации выходного напряжения в данной схеме основан на поддержании потенциала 5-го вывода величиной +1,25 В относительно 4-го вывода. В то же время 4, 3 и 2 выводы подключены к наиболее минусовой (выходной) шине, поскольку используются внутренние узлы самой микросхемы. Подключение этих выводов к наиболее минусовому потенциалу является важнейшим требованием, т.к. обусловлено допустимыми значениями на p-n переходах внутримикросхемных транзисторов. В то же время, это существенно ограничивает максимально возможное значение отрицательного выходного напряжения, которое в сумме со входным не должно превышать максимально допустимого значения.

Но нам-то требуется стабилизировать ток! Причем, относительно общей шины. Причем, для цепочек светодиодов, составляющих светящиеся кластеры.

Для решения поставленной цели нужно решить две взаимосвязанных задачи:

  1. отделить выходное напряжение отрицательной полярности от питающего напряжения положительной полярности, чтобы не быть завязанным на максимальное напряжение питания микросхемы, которое для инвертирующей конфигурации равно сумме их абсолютных значений и не должно превышать 40 В;
  2. обеспечить инверсию напряжения измерительного сигнала от отрицательной полярности к положительной.

Поэтому без дополнительных компонентов (усилителя падения напряжения на токовом шунте) обойтись не удастся. Используем такой же дешевый (менее $0.10 в SMD корпусе) операционный усилитель LM358. И, опять же, его можно найти забесплатно в старой аппаратуре. С его применением эти задачи решаются следующим образом (Рис. 4):


Рис. 4 Принципиальная схема инвертирующего преобразователя со стабилизацией тока

Преобразователь на DA1 и внешнем транзисторе VT1 «молотит», в первом приближении не учитывая полярности и стабильности выходного напряжения. Об этом «заботится» каскад на ОУ DA2. Он построен на известном источнике тока для заземленной нагрузки на двух ОУ (Рис. 5) [5, 6]. Микросхема DA2 запитана по минусу от выходного отрицательного напряжения, формируемого преобразователем, а по плюсу — от положительного напряжения питания микросхемы DA1.


Рис. 5 Источник тока с заземлённой нагрузкой, не требующий плавающего источника питания

Фактически, схема состоит из двух источников тока. Первый на ОУ DA2.1 преобразует опорное напряжение на токоизмерительном шунте R1 в ток, создающий на резисторе R5 падение напряжения, пропорциональное току через светодиод (их цепочку) HL1. Поскольку ОУ LM358 способен работать с сигналами на уровне минусовой шины питания и даже минусовее ее на 0,4 В, то сопротивление токоизмерительного шунта R1 выбрано всего 0,1 Ома, что при токе через светодиод 0,9 А создает падение напряжения всего 0,09 В. С этим напряжением сравнивается падение напряжения на эмиттерном резисторе R6, которое, при его номинале 91 Ом, формирует ток, равный 1 мА. Этот ток создает на резисторе R5 (играющим такую же роль, как и R1) падение напряжения 2 В, поскольку по плюсовой шине ОУ не способен работать с уровнями сигналов, приближающимися к положительному питанию менее, чем на 1,5 В как по входу, так и по выходу.

Второй ОУ на DA2.2 формирует вытекающий ток, создающий на заземленном резисторе, подключенном между общей шиной и 5-м выводом микросхемы DA1 падение напряжения, равное +1,25 В при условии соответствия тока через токоизмерительный шунт R1 = 0,9 А. Регулировка этого тока под нужное значение осуществляется подстроечным резистором R8.

Стабилитрон ZD1 является защитным, предотвращающим чрезмерное повышение напряжения питания DA2 более 32 В при обрыве светодиода (их цепочки) и в штатном режиме не влияет на роботу схемы.

Недостатком этой схемы является ограниченный диапазон выходного отрицательного напряжения, которое вместе с бортовым напряжением питания не должно превышать максимально допустимого для ОУ DA2 32 В. Если принять напряжение питания (со всякими выбросами), равным 15…16 В, то на светодиоды остается всего те же 15…16 В, что соответствует цепочке из всего 4-х белых светодиодов. Красные можно подключить и цепочкой из 6 шт., но, во-первых, они более редкие, а значит и более дорогие, а во-вторых, их светоотдача более, чем в 2 раза ниже, чем у белых.

Для обхода этой проблемы вместо ОУ DA2.2 можно применить токовое зеркало (отражатель тока) на двух транзисторах (рис. 6). Тем более, что такой уж супер-пупер стабильности вытекающего тока для светодиодов совершенно не требуется. На глаз разница в яркости будет практически незаметной. Т.о., из двух ОУ нам нужен только один. НО! Стоимость одиночного ОУ с параметрами, близкими к параметрам LM358 (например, LM321), в 5…6 раз больше стоимости LM358, особенно в корпусе SO8. Парадокс — но факт. Проще и дешевле «заглушить» один из ОУ в корпусе (лучше с выводами 1, 2, 3), чем гоняться за экзотикой и переплачивать за нее. Питание микросхемы DA2.2 теперь осуществляется выходным отрицательным напряжением преобразователя и нулем входного напряжения, что позволяет запитать цепочку светодиодов суммарным напряжением до 32 В (9 светодиодов с падением напряжения до 3,3 В на каждом в виде кластера 3х3).


Рис. 6 Принципиальная схема инвертирующего преобразователя со стабилизацией тока и повышенным падением напряжения на нагрузке

Подстроечным резистором R5 регулируется коэффициент соответствия между входным и выходным токами. Защиты в данной схеме пока нет, это дело будущего.

Что делать, если и 32 В мало? Лёгко! Запитать ОУ DA2 по нулевой шине через примитивный стабилизатор напряжения на транзисторе (VT5), стабилитроне и резисторе. Трехвыводный стабилизатор 7924 применить, в принципе, тоже можно, но он также ограничен по значению максимального входного напряжения. Тем более, что особой стабильности питающего напряжения для ОУ не требуется.

В качестве ключевого транзистора VT1 вполне можно применить P-канальный полевой транзистор (опционально — с драйвером разрядного тока на биполярном транзисторе). Кроме того, подстройку +1,25 на входе компаратора ОС можно осуществлять изменением номинала сопротивления R5. Вариант схемы с указанными изменениями и дополнениями представлен на Рис. 7.


Рис. 7 Принципиальная схема высоковольтного инвертирующего преобразователя со стабилизацией тока

Поскольку за счет применения внешнего ключевого транзистора входы самой микросхемы DA1 никаким образом с выходным отрицательным напряжением не связаны, снимается ограничение на значение формируемого отрицательного напряжения.

Драйвер по Рис. 6 был установлен для питания светодиодных ДХО на Жигули-«зубило» зятя. К сожалению, фото не сохранилось, а зять с дочкой развелся…

Но его КПД был измерен и оказался равным 84%!

Источник

Как подобрать драйвер светодиодной лампы: виды, назначение + особенности подключения

Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.

Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.

Назначение и сфера использования

Диодные кристаллы состоят из двух полупроводников – анода (плюс) и катода (минус), которые и отвечают за трансформацию электросигналов. Одна область имеет проводимость P-вида, вторая – N. При подключении источника питания через эти элементы потечет ток.

За счет такой полярности электроны из зоны P-типа устремляются в зону N-типа, и наоборот, заряды из точки N устремятся к Р. Однако каждый раздел области имеет свои границы, называющиеся P-N переходами. На этих участках частицы встречаются и взаимопоглощаются или рекомбинируются.

Во время P-N переходов напряжение снижается на определенное количество вольт, всегда одинаковое для каждого элемента цепи. Учитывая эти значения, драйвер стабилизирует показатели входящего тока и образует на выходе постоянную величину.

Какая требуется мощность и какие значения потерь при P-N прохождении указываются в паспорте светодиодного прибора. Поэтому при выборе диодной лампочки необходимо учитывать параметры блока питания, диапазон которых должен быть достаточным для компенсации утраченной энергии.

Блоки питания с напряжением от 10 до 36 В применяются для оснащения осветительных приборов.

Техника может быть самых различных видов:

  • фары автомобилей, велосипедов, мотоциклов и т. д.;
  • небольшие переносные или уличные фонари;
  • светодиодные линейки, ленты, потолочные лампочки и модули.

Однако для маломощных светодиодов, а также в случае использования постоянного напряжения, драйверы допустимо не применять. Вместо них в схему вносится резистор, также питающийся от сети 220 В.

Принцип работы блока питания

Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.

Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.

Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).

Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).

Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.

Отличительные характеристики преобразователя

Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.

Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.

К главным факторам, влияющим на работу, относятся:

  • составляющие элементы, используемые в процессе сборки;
  • степень защиты (IP);
  • минимальные и максимальные значения на входе и выходе;
  • производитель.

Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).

Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.

Правила подбора преобразователя тока

Для приобретения преобразователя LED лампы следует изучить ключевые характеристики прибора. Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.

Мощность световых диодов

Разберем изначально выходное напряжение, которое подчинено нескольким фактором:

  • значение потерь напряжения на P-N переходах кристаллов;
  • количество световых диодов в цепочке;
  • схема подключения.

Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.

Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя — обеспечить этим элементам подачу нужного количества энергии.

Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.

Для просчета потребляемой энергии используют такую формулу:

  • PLED – электрическая нагрузка, создаваемая одним диодом,
  • N – количество кристаллов в цепи.

Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.

Максимальная мощность прибора

Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение PH.

Таким образом формула приобретает вид:

где Pmax — номинальная мощность блока питания.

Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.

Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.

Их характеристики выглядят следующим образом:

  • падение напряжения 1,9-2,4 В;
  • ток 350 мА;
  • средняя мощность потребления 750 мВт.

Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.

Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.

Схема подключения светодиодов

Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.

Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.

Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.

В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.

Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.

Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.

Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.

Многие виды светодиодок для домашнего освещения рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.

Виды драйверов по типу устройства

Приспособления, преобразующие питание 220 В на необходимые показатели для светодиодов, условно делятся на три категории: электронные; на базе конденсаторов; диммируемые.

Рынок светотехнических аксессуаров представлен обширным разнообразием моделей драйверов в основном китайского производителя. И несмотря на низкий ценовой диапазон, из этих приборов можно выбрать вполне достойный вариант. Однако стоит обращать внимание на гарантийный талон, т .к. не вся представленная продукция имеет приемлемое качество.

Электронный вид прибора

В идеальном варианте электронный преобразователь должен быть оснащен транзистором. Его роль состоит в осуществлении разгрузки регулировочной микросхемы. Для исключения или максимального сглаживания пульсации, на выходе монтируется конденсатор.

Такого типа устройство относится к дорогостоящей категории, однако оно способно стабилизировать ток до 750 мА, на что балластные механизмы неспособны.

Пульсирование – это не единственный недостаток преобразователей. Вторым можно назвать электромагнитные помехи высокочастотного (ВЧ) диапазона. Так, если в розетку, связанную со светильником, будут подключаться другие электроприборы, например, радио — можно ожидать помехи при приеме цифровых FM-частот, телевидения, роутера и т. д.

В опциональном устройстве качественного прибора должны быть два конденсатора: один – электролитический для сглаживания пульсаций, другой – керамический, для понижения ВЧ. Однако такое сочетание можно встретить нечасто, особенно если говорить о китайских изделиях.

За счет высокого КПД (до 95%) такие механизмы подходят для мощных приборов, используемых в различных сферах, например, для тюнинга автомобилей, в уличных осветительных приборах, а также бытовых LED источниках.

Блок питания на основе конденсаторов

Теперь переходим к не столь популярным устройствам – на базе конденсаторов. Практически все схемы светодиодных ламп дешевого образца, где применены такого типа драйверы, имеют схожие характеристики.

Однако вследствие модификаций производителем они претерпевают изменения, например, удаление какого-либо элемента цепи. Особо часто этой деталью служит один из конденсаторов — сглаживающий.

Плюсов у таких механизмов всего два: они доступны для самостоятельной сборки, а их КПД приравнивается к стопроцентному, т. к. потери будут только на p-n переходах и сопротивлениях.

Такое же количество и отрицательных сторон: низкая электробезопасность и высокая степень пульсации. Второй недостаток составляет около 100 Гц и образуется в результате выпрямления переменного напряжения. В ГОСТе прописана норма допустимой пульсации в 10-20 % в зависимости от предназначения помещения, где установлен светотехнический прибор.

Единственный способ сгладить этот недостаток – подбор конденсатора с правильным номиналом. Тем не менее не стоит рассчитывать на полное устранение проблемы, – такое решение может всего лишь сгладить интенсивность всплесков.

Диммируемые преобразователи тока

Драйверы-светорегуляторы для диммируемых LED-лампочек позволяют менять входящие и выходящие показатели тока, при этом снижается или увеличивается степень яркости света, излучаемого диодами.

Существует два метода подключения:

  • первый предполагает плавный пуск;
  • второй – импульсный.

Рассмотри принцип работы диммируемых драйверов на основе микросхемы CPC9909, используемой в качестве регулирующего аппарата для светодиодных цепей, в том числе и с высокой яркостью.

При плавном пуске микросхема с драйвером обеспечивает постепенное включение диодов с нарастающей яркостью. Для этого процесса задействуют два резистора, подключенные к выводу LD, предназначенного для выполнения задачи плавного диммирования. Так реализуется важная задача – продление срока эксплуатации LED элементов.

Этот же вывод обеспечивает и аналоговое регулирование — резистор на 2,2 кОм меняют на более мощный переменный аналог — 5,1 кОм. Таким образом достигается плавное изменение потенциала на выходе.

Применение второго способа предполагает подачу импульсов прямоугольного типа на низкочастотный вывод PWMD. При этом задействуют либо микроконтроллер, либо импульсный генератор, которые обязательно разделяются оптопарой.

С корпусом или без него?

Драйвера выпускаются в корпусе или без. Первый вариант является самым распространенным и более дорогим. Такие устройства защищены от попадания влаги и частиц пыли.

Приспособления второго типа применяются при проведении скрытого монтажа и, соответственно, отличаются дешевизной.

Каждый из них отличается допустимой температурой в процессе эксплуатации – на это также необходимо обращать внимание при подборе.

Классическая схема драйвера

Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.

Схема такого механизма составлена из трех основных каскадных областей:

  1. Разделитель напряжения на емкостном сопротивлении.
  2. Выпрямитель.
  3. Стабилизаторы напряжения.

Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.

Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.

Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.

Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.

Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.

Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.

Выводы и полезное видео по теме

Все сложности, с которыми может столкнуться радиолюбитель, подбирающий преобразователь для мощных LED ламп, подробно описаны в видеосюжете:

Ключевые особенности самостоятельного подключения преобразовательного прибора в электросхему:

Поэтапный инструктаж, описывающий процесс сборки своими руками светодиодного драйвера из подручных средств:

Несмотря на заявленные производителем десятки тысяч часов бесперебойной работы светодиодных ламп, есть множество факторов, существенно снижающих эти показатели.

Для сглаживания всех прыжков тока в электросистеме предназначены драйверы. К их выбору или самостоятельной сборке нужно подходить ответственно после просчета всех необходимых параметров.

Расскажите о том, как подбирали драйвер для работы светодиодной лампочки. Поделитесь своими аргументами и способами стабилизации поставки напряжения диодному прибору освещения. Оставляйте комментарии в находящемся ниже блоке, задавайте вопросы, размещайте фотоснимки по теме статьи.

Источник

Оцените статью