Как исчезает снег
Кандидат географических наук Марк Софер. Фото Натальи Домриной
Зима ещё хлопочет
И на Весну ворчит…
Ф. И. Тютчев
Какой бы долгой ни была зима, рано или поздно она сменяется весной, а когда именно произойдёт поворот от зимы к весне, точнее всего скажет… снег. Время достижения наибольшей высоты снежного покрова — переломный момент в годовом цикле природы. Зима кончается, как только снежный покров перестаёт расти (кроме тех мест, где он неустойчив или кратковременен). На огромных пространствах северной Европы и Сибири к концу февраля — началу марта, как правило, накапливаются максимальные снегозапасы. Если в это время сделать гигантский «снежный разрез», то по нему можно прочитать «биографию» уходящей зимы, ведь каждый слой — страничка из жизни снега.
Размер кристаллов свидетельствует о возрасте слоя. В самом низу, у более старого снега, кристаллы к марту становятся крупными и прозрачными. Чем выше, тем они мельче, а на самом верху снег совсем не успевает перекристаллизироваться. По числу ледяных прослоек можно установить, сколько было оттепелей. Тёмные, грязные полоски (особенно явные вблизи крупных населённых пунктов) — «справка» о том, что снег долго не выпадал. Каждый последующий слой свидетельствует об очередном снегопаде.
На большей части Евразии в феврале — марте происходит уплотнение и таяние снега. Сначала солнечные лучи только прогревают его толщу. Затем, когда температура во всём слое поднимается до нуля, начинается быстрое таяние. Снег пропитывается водой. Этот процесс напоминает поведение куска сахара в воде. А Сергей Есенин подметил, что:
Снег, словно мёд ноздреватый,
Лёг под прямой частокол.
Действительно, талая вода прокладывает вертикальные ходы в снежном покрове, и он приобретает вот такой «ноздреватый» вид.
Наступает основной период снеготаяния, который длится до схода снега на половине площади. Именно в этот период, очень короткий по сравнению со временем снегонакопления, теряется до 80% зимних снегозапасов.
Обильные северные снега, накопленные природой в течение почти полугода, могут стаять за 20 дней (примерно за такой срок освобождаются от снега Финляндия, Швеция, север России). В средней полосе процесс идёт ещё быстрее — за 8—10 дней. Всего за неделю сходит снег почти во всей Украине и в Поволжье.
Продолжительность снеготаяния имеет исключительное значение. Чем она короче, тем больше в единицу времени стекает талой воды с поверхности почвы. Трудно найти более краткое и точное описание этого периода, чем в знаменитых строках Фёдора Ивановича Тютчева (1836 год):
Ещё в полях белеет снег,
А воды уж весной шумят…
Почти через полвека ленинградский поэт Иван Дементьев написал:
Сугроб уже сутулится
От солнечных лучей,
И побежал по улице
Сверкающий ручей.
И «шум воды» и «бегущий ручей» свидетельствуют о таком бурном таянии, которое не может пройти бесследно. Не каждая речка способна принять в себя гигантский поток талой воды, особенно если она не успела освободиться ото льда после зимней спячки. Именно в период интенсивного снеготаяния возникает угроза катастрофических половодий, сильного разрушения (эрозии) почвы, деформации русел рек.
По данным метеорологов, стаивающий за сутки снег может дать около 30 л воды с 1 м 2 поверхности. При особо благоприятных условиях — до 80 л. Представьте, что столько воды выливается за сутки на 1 м 2 участка — в некоторых регионах страны это соответствует месячной норме осадков.
Но это там, где снега много. Где его мало, таяние заканчивается намного быстрее. В степных районах из-за сухости воздуха и интенсивной солнечной радиации возможно прямое испарение снега, без превращения его в воду. Такое «съедание» снега не угрожает разрушительным половодьем, однако лишает почву живительной влаги под будущий урожай.
Как же узнать, где снега много, а где мало, какой окажется предстоящая весна и какие «сюрпризы» нам преподнесёт природа? Чтобы получить ответы на эти вопросы, метеорологи систематически проводят снегомерную съёмку почти на всей заснеженной площади планеты. Из-за разнообразия климата и рельефа картина распределения снега получается довольно пёстрой.
Как же исчезает снег? Постепенно, почти незаметно. Даже в устойчивую, без единой оттепели морозную зиму снежный покров истончается, так что к весне он оказывается полностью «съеденным». Не успевая растаять, снег испаряется.
Физики называют процесс испарения снега или льда, то есть перехода вещества из твёрдого состояния сразу в газообразное, минуя жидкое, сублимацией или возгонкой. Физические законы (включая термодинамические), по которым происходит испарение и кристаллизация ледяных частиц, достаточно сложны. Количественные характеристики этих процессов зависят как от многообразных свойств снега, так и от условий внешней среды, к которым помимо температуры и влажности воздуха относится и ветер — он иногда становится хозяином снега. Благодаря ветру снег может не только падать вниз, но и взлетать, перемещаться на большие расстояния, рассеиваться, усиленно испаряться.
Учесть все перемещения снега, оценить его потери, определить сроки исчезновения позволяют балансовые методы расчёта. Как в хорошей бухгалтерии, по ним можно проследить каждый этап жизни снега: выпадение, перемещение, отложение, исчезновение.
Если сопоставить массу всех выпадающих из облака снежинок с массой снега, уже достигшего земли, то они не будут равны. Внизу наверняка обнаружится существенная «недостача». Естественным объяснением этого будет «усушка» снега по дороге между небом и землёй. Действительно, количество снега, достигшего земли, гораздо меньше, чем начавшего падать с облака. Но это явление — в рамках законов физики.
Известно, что мелкие капли и ледяные кристаллики испаряются при дефиците влажности воздуха поразительно быстро, буквально на лету. Объясняется это тем, что продолжительность испарения таких частиц приблизительно пропорциональна квадрату их радиуса. Следовательно, при прочих равных условиях частица радиусом 0,1 мм испарится и исчезнет в 100 раз быстрее, чем частица радиусом 1 мм. Чем меньше становится снежинка, тем быстрее она испаряется, а начав «худеть», она уже не может остановиться.
Но для сильного «похудания» нужно время. Хватит ли его снежинке на сравнительно коротком пути к земле? Временем она располагает немалым, ведь срок жизни свободно парящей снежинки составляет десятки минут. Например, при высоте облачного слоя 2 км над поверхностью земли и средней скорости падения снежинок 1 м/с снежинка пройдёт свой путь за 2000 секунд, или 33 минуты. Если воздух достаточно холодный и влажный, то снежинки, не очень «исхудав», успевают долететь до земли и образовать снежный покров. Если же воздух окажется более тёплым и сухим, то снежинки испарятся, не достигнув земли. Ситуация, о которой говорят: «тучи есть, а снега нет».
Знание высоты и продолжительности полёта снега, его способности испаряться в воздухе имеет большое практическое значение. От этих параметров зависят весенние снегозапасы, а следовательно, и водность рек. Установлено, что в одном и том же географическом районе на возвышенностях снега выпадает больше, чем на равнинах. Причина — меньший путь от облаков до земли и соответственно меньшие потери снега на испарение. Балансовые расчёты снега позволяют увидеть многие знакомые явления с новой, неожиданной стороны, дают им научное объяснение.
Например, уже давно замечен интересный факт: после сильной метели количество снега в наметённых сугробах не соответствует убыли снега на обдуваемых полях — оно значительно меньше. Куда же исчезает с поля остальной снег?
Лишь сравнительно недавно удалось экспериментально доказать, что переносимые ветром частицы снега во время своего полёта интенсивно испаряются. Выяснилось, что в сухом воздухе для снежинки среднего размера существует максимальная длина переноса, которая определяет, быть снежинке в сугробе или исчезнуть по дороге. Чем больше скорость ветра, тем меньше время перелёта этого критического расстояния и, следовательно, больше дальность переноса снега.
Какой же путь успевает совершить снежинка до своего исчезновения? Это зависит и от рельефа, и от сухости (влажности) воздуха. Различия в «длине пробега» очень велики. Например, в горных районах на расстояние больше 0,5 км снег не перемещается. На равнинах Западной Сибири снежинки могут улететь за 30—50 км от того места, где их подхватил порыв ветра. Вот почему при сравнительно небольшом количестве зимних осадков снега там всегда вдосталь.
В Приволжье, в степях Казахстана и Западной Сибири потери снега с открытых мест в среднем составляют 50% от выпавших осадков. В условиях малоснежных зим это губительно отражается на урожае. Недаром возникла старинная пословица, фиксирующая эту связь: «снегу надует — хлеба прибудет» (то есть надует на поля).
Многие, возможно, обращали внимание, что падающий без ветра снег старательно повторяет все тонкости местного рельефа. Но уже через несколько часов эти тонкости начинают стираться. Через несколько дней поверхность снежного покрова выравнивается, а к концу сезона приближается к плоской, какой её видел А. И. Полежаев (1835 год):
Вдали, кругом, холодная немая —
Везде одна равнина снеговая;
Везде один безбрежный океан,
Окованный зимою великан!
Снег тщательно сглаживает неровности рельефа. Чем вызвана такая «самонивелировка»?
Дело в том, что испарение снежных частиц зависит от площади их внешней поверхности и происходит с любой стороны, куда есть доступ воздуху, а тем более ветру. Чем больше открытой поверхности, тем больше испарение. Минимально оно с плотной плоской поверхности. Вот почему снежинки стараются «не высовываться», как можно плотнее прижаться друг к другу, а поверхность снежного покрова — принять форму, наиболее устойчивую к ветру. Это либо плоскость, либо очень пологие сугробы.
Те же небольшие скопления снега, что оказались открытыми, незащищёнными, подвергаются сильнейшему воздействию ветра и вынуждены исчезнуть, точнее — превратиться в водяной пар. Самая незавидная участь — у отдельных снежинок. Если они не прикроют своими «телами» друг друга, то, обдуваемые ветром со всех сторон, испаряются в 10—100 раз быстрее, чем в безветрие. Вот почему снег так быстро исчезает с крон деревьев, проводов, шпилей. Иногда он почти полностью рассеивается во время метелей. Происходит процесс, о котором можно сказать: «ветер снег съедает».
Но не только сублимация и ветер определяют судьбу снега. Он испытывает множество других воздействий: давление вышележащих слоёв, колебания температуры в зимние месяцы, оттепели, поверхностное таяние и последующее замерзание воды, просачивающейся вглубь, а также конденсацию — прямой переход воды из газообразного в твёрдое состояние. Известно, что в интервале плотности лежалого снега от 270 до 360 кг/м 3 увеличение температуры всего на 1 градус даёт увеличение плотности на 4 кг/м 3 . Со временем снег настолько уплотняется, что перестаёт быть собственно снегом, превращаясь в фирн, или зернистый лёд. В зависимости от погодных условий плотность фирна колеблется от 360 до 800 кг/м 3 , что в 3—5 раз превышает плотность своего самого первого предшественника. Таким образом, под влиянием погодных факторов снег уплотняется, проседает, высота снежных сугробов заметно уменьшается.
В шутку этот процесс можно назвать «утруской» снега.
Более плотный снег и ледяная корка, в том числе и наст, ничуть не снижают темпов исчезновения некогда обширного белого покрова, а даже увеличивают его из-за повышения плотности и, как следствие, теплопроводности. Температура поверхности при этом будет выше температуры поверхности рыхлого снега, поскольку с увеличением плотности вещества толщина слоя поглощения солнечной радиации уменьшается, что приводит к большему его нагреву.
Лёд испаряется не только при положительных температурах воздуха, но и при самых сильных морозах, тем более что им сопутствует низкая влажность воздуха.
Именно весной, при уже хорошо пригревающем солнце, мы замечаем, что от тающего снега веет холодом. Он ощутим даже при плюсовых температурах воздуха. Недаром говорят, что весеннее тепло обманчиво. Причина известна: в соответствии с законами термодинамики процесс таяния «отбирает» у прилегающих слоёв воздуха тепло и тем самым холодит его.
Перейдя на участок, где снег уже растаял, вы заметите, что стало ощутимо теплее — земля быстро прогревается и подсыхает. Этот процесс также не остался без поэтического отражения. Слова А. К. Толстого (1856 год) лаконичны и точны:
Вот уж снег последний в поле тает.
Тёплый пар восходит от земли.
Эти термодинамические процессы в определённых ситуациях мы успешно используем в своей практической деятельности. Например, «сухое» испарение льда (возгонку), когда вывешиваем зимой на улице мокрое бельё. Казалось бы, как можно высушить его на морозе? Оно же просто замёрзнет! Бельё действительно замерзает, превращаясь в твёрдое несгибаемое полотно, но в таком состоянии оно тоже сохнет — процесс испарения продолжается, но не с поверхности жидкости, а с поверхности льда. Открытое пространство, а тем более ветер способствуют испарению и ускорению сушки.
Поэтому для ускорения схода снега в городах ближе к весне производится сколка уплотнённого снега у поребриков тротуаров, разрушение залежалых снежных скоплений во дворах. И с этой же целью садоводы перелопачивают снег на своих участках. Несколько сухих, а ещё лучше ветреных дней — и все остатки снега бесследно исчезают, даже мокрого места не остаётся. Значит, весна полностью вступила в свои права.
Источник
Испарение
О чем эта статья:
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
- Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
- Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
- из глубины жидкости к поверхности, а затем в воздух;
- только из жидкости к поверхности;
- к поверхности из воды и газовой среды одновременно;
- к площади поверхности только от воздуха.
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |
Испарение на уровне молекул
Давайте вспомним об особенностях разных агрегатных состояний вещества.
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около своего положения в кристаллической решетке
близко друг к другу
малоподвижны, при нагревании скорость движения молекул увеличивается
занимают предоставленный объем
больше размеров молекул
хаотичное и непрерывное
Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.
В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
- Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться 🙂
- Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
- Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
- Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Насыщенный пар
Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.
Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.
На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.
Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, при избыточном количестве водяного пара происходит конденсация — это когда образуется роса.
Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.
Но если мы тот же воздух поместим в помещение с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.
При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Источник