Шестиугольные структуры — почему они так часто встречаются в природе
Столбы базальтов от извержения старого вулкана. Снежинка. Пчелиные ульи. Кораллы, кристаллы и множество других структур, как биологических, так и небиологических, имеют форму шестиугольника. Почему природа, которая часто кажется такой беспорядочной и неправильной, предпочитает именно эту форму? Оказывается, все дело в геометрии и физике.
Пчелы тратят много времени на работу, но они не любят работать впустую — пчелы ничто, если они не эффективны. Пчелы также эффективно строят свои соты, и шестигранная форма помогает в этом.
Соты строятся из пчелиного воска, вырабатываемого рабочими пчелами. Они вырабатывают воск из специальных желез в своем теле, которые затем смешивают с небольшим количеством меда и пыльцы, которую они разжевывают, чтобы получить пчелиный воск. Соты будут служить сосудами для хранения меда, а также камерами для выращивания молодых пчел.
Все это хорошо и замечательно, но почему шестиугольники?
Древние философы тоже задавались этим вопросом. Греческий философ Папп Александрийский, изучавший шестиугольники более 1 600 лет назад, считал, что пчелы обладают «определенным геометрическим мышлением», а энтомолог Уильям Кирби полагал, что пчелы — это «математики, наученные небесами». Даже Чарльз Дарвин интересовался шестиугольниками пчел и проводил эксперименты, чтобы выяснить, могут ли пчелы строить шестиугольные соты, используя только свои инстинкты, или это обучаемое поведение.
Шестиугольники — это шестигранные геометрические структуры. В переводе с греческого «гекс» означает «шесть». У обычных шестиугольников (таких, как показан здесь) все стороны равны, а все внутренние углы равны 120 градусам.
Ко времени Дарвина люди довольно хорошо понимали геометрию шестиугольников — особенно когда речь шла о покрытии поверхностей. Если вы хотите использовать одну форму и только одну форму для покрытия плоской поверхности, есть только три формы, которые работают: равносторонние треугольники, квадраты и шестиугольники. Из них шестиугольники используют наименьшее количество разделительной стенки, поэтому логично, что пчелы предпочитают именно их, поскольку это означает, что им нужно использовать меньше пчелиного воска. Как заявил Дарвин, это самое эффективное решение, и шестиугольные соты «абсолютно идеальны в экономии труда и воска». Пчелы действительно были наделены некоторыми геометрическими способностями.
Пчелы — далеко не единственные существа, использующие шестиугольники. Кожица в центральной части панциря черепах имеет шестиугольную форму — опять же, потому что это такой эффективный способ покрытия поверхности. Но шестиугольники не очень хорошо работают на изогнутых поверхностях, таких как панцирь черепахи, поэтому в панцире также есть кольцо пятиугольников и неправильных форм.
Вымерший коралл Cyathophyllum hexagonum даже назван в честь своей шестиугольной формы, а некоторые диатомовые водоросли (основная группа водорослей) также имеют шестиугольную форму. Но, пожалуй, ни одна биологическая структура не имеет такой поразительной шестиугольной формы, как глаза стрекоз.
Глаза, состоящие примерно из 30 000 шестиугольников, переплетенных в ослепительное множество, являются одними из лучших в животном мире. Фактически, глаза стрекоз состоят из правильных шестиугольников, причем только три из этих шестиугольников встречаются в любой данной точке пересечения (или вершине).
У стрекоз два больших сложных глаза с тысячами шестиугольных линз (а также три глаза с простыми линзами, но оставим их пока в стороне). Шестиугольные линзы соединены между собой длинным тонким сетчатым каналом. На самом деле, у многих насекомых глаза имеют шестиугольную форму, и правило всегда гласит, что только три стенки клетки могут встречаться в любой вершине.
На самом деле, если мы на мгновение отойдем от биологического мира, то обнаружим, что точно такое же правило управляет чем-то совершенно другим: пеной из пузырьков.
Хотя пена пузырьков остается трудноразрешимой математической задачей, известно, что пена часто имеет тенденцию образовывать шестиугольные формы. В данном случае речь идет о поиске структуры с наименьшим общим поверхностным натяжением (что означает наименьшую площадь стены из мыльной пленки), и эта форма оказывается шестиугольником.
Конечно, структуры пены редко бывают идеально шестиугольными (а иногда они вообще не шестиугольные), потому что они также должны быть механически устойчивыми (и противостоять таким вещам, как ветер). Что еще более усложняет ситуацию, трехмерное расположение делает проблему еще более сложной. Несмотря на склонность к шестиугольникам, пена редко бывает упорядоченной.
На самом деле было удивительно много споров о том, какие формы может принимать пена, исследователи предлагали трехмерные 14-гранные многогранники и даже некоторые более безумные и беспорядочные формы. Но именно здесь становится интересно. Правила, управляющие формой ячеек в пене, похоже, также управляют некоторыми формами живых клеток. Дело не только в том, что глаза некоторых мух имеют такие же шестиугольные узоры, как и пена пузырьков, но и в том, что клетки внутри отдельных линз сгруппированы таким образом, что, похоже, повторяют геометрию пены пузырьков. Это поразительный случай, когда физика и математика направляют формы в биологическом мире.
Пена — далеко не единственная шестиугольная форма в природе. Возможно, наиболее ярким примером является вулканическое столбчатое соединение.
Соединение колонн в Дороге гигантов в Северной Ирландии.
Некоторые вулканические извержения (особенно те, которые порождают базальтовые породы) могут порождать поразительные шестиугольные образования, которые озадачивали людей на протяжении веков. Подобные образования есть во многих местах по всему миру — от как бы шестиугольных до почти идеально шестиугольных. К счастью, у нас есть довольно хорошее представление о том, как они образуются.
Когда вулкан извергается, он может извергать горячую лаву. Вытекая на поверхность, лава начинает остывать — и по мере остывания она сжимается. Это сжатие создает все большее и большее давление, и в конце концов образуются трещины. Как выяснилось, угол, который создает наибольшее напряжение, составляет 120 градусов — это, если вы помните, внутренний угол в правильном шестиугольнике.
Но не вся лава остывает в одно и то же время, и некоторые участки могут все еще течь, в то время как другие уже затвердели, что может сделать формы более несовершенными. Поразительно, что часто угол удивительно близок к 120 градусам.
Иногда колонны могут достигать внушительных размеров — хотя шестиугольники не всегда идеальны.
Если вы все еще не верите в существование шестиугольников в природе, вот еще один пример: снежинки.
Конечно, каждая снежинка уникальна, но все снежинки имеют шесть сторон или точек, и это связано с тем, как они формируются. Внешняя форма снежинок отражает их внутреннюю структуру. Гексагональная структура позволяет молекулам воды (с одним атомом кислорода и двумя атомами водорода) группироваться вместе наиболее эффективным образом.
Можете ли вы заметить шестиугольную структуру в этой снежинке?
На самом деле, если увеличить масштаб, снежинки — далеко не единственные кристаллы, имеющие шестиугольную структуру. Существует целое семейство кристаллов (так называемое семейство гексагональных кристаллов), внутренняя структура которых состоит из шестиугольников или структур гексагонального типа.
Если мы еще больше увеличим масштаб, то обнаружим еще одну форму шестиугольника. Как быстро отметит любой студент-химик, шестиугольники являются основой органической химии. Когда шесть атомов углерода соединяются, угол составляет 120 градусов, что уже должно быть знакомо. Шесть соединенных атомов углерода образуют идеальный шестиугольник, который также называется бензольным кольцом.
Есть еще один пример, который мы должны рассмотреть, и мы перейдем от очень маленьких к очень большим. Планета Сатурн имеет один из самых необычных шестиугольников в Солнечной системе: облачный узор длиной около 14 500 км; он больше, чем весь диаметр Земли. Шестиугольник состоит из газов, движущихся со скоростью 320 км/ч, и, как полагают, имеет толщину до 300 км.
Исследователи точно не знают, почему так происходит, но уже выдвинуто несколько теорий.
Почему же шестиугольники так часто встречаются в природе? Это зависит от того, как на это посмотреть. Это может быть эффективный способ сохранения массы или энергии, или просто способ расположить атомы таким образом, чтобы они были стабильны. Это может быть просто что-то, обусловленное геометрией.
Природе, как правило, не нравятся очень фиксированные вещи — но она любит узоры, и иногда ей нравятся шестиугольники. Возможно, зная и осознавая это, мы сможем получать еще больше удовольствия от этих шестиугольников, когда столкнемся с ними.
Источник
Почему снежинки шестиугольные?
Комментарии к. х. н. О. В. Мосина.
Почему элементарные кристаллы льда шестиугольны легко попять, анализируя структуру кристаллической воды – льда.
В молекуле воды две электронные пары образуют полярные ковалентные связи между атомами водорода и кислорода, а оставшиеся две электронные пары остаются свободными и называются неподеленными.
Поскольку у атома кислорода больше электронов (химики говорят, что атом кислорода более электроотрицательный), чем у атома водорода, электроны двух атомов водорода сдвигаются в сторону более электроотрицательного атома кислорода, приводя к тому, что два положительных заряда атомов водорода компенсируются равным по величине двум атомов водорода отрицательным зарядом атома кислорода. Поэтому электронное облако имеет неоднородную плотность. Около ядер водорода имеется недостаток электронной плотности, а на противоположной стороне молекулы, около ядра кислорода, наблюдается избыток электронной плотности. Это приводит к тому, что молекула воды представляет собой маленький диполь, содержащий положительный и отрицательный заряды на полюсах. Именно такая структура и определяет полярность молекулы воды. Если соединить прямыми линиями эпицентры положительных и отрицательных зарядов получится объемная геометрическая фигура — правильный тетраэдр.
Элементарной ячейкой воды являются тетраэдры, содержащие связанные между собой водородными связями пять молекул Н2О. При этом у каждой из молекул воды в простых тетраэдрах сохраняется способность образовывать водородные связи. За счет их простые тетраэдры могут объединяться между собой вершинами, ребрами или гранями, образуя разнообразные пространственные структуры.
Рис. В кристаллической структуре льда каждая молекула воды участвует в 4 водородных связях, образуя тетраэдр
Таким образом, структура воды связана с так называемыми платоновыми телами (тетраэдр, додекаэдр), форма которых связана с золотой пропорцией. Молекула воды также имеет форму платонова тела (тетраэдра).
И из всего многообразия структур в природе базовой является гексагональная (шестигранная) структура, когда шесть молекул воды (тетраэдров) объединяются в кольцо. Такой тип структуры характерен для льда, снега и талой воды.
Снежинка — сложная симметричная структура, состоящая из кристалликов льда, собранных вместе. Вариантов «сборки» множество — до сих пор не удалось найти среди снежинок двух одинаковых. Исследования, проведенные в лаборатории Либбрехта, подтверждают этот факт — кристаллические структуры можно вырастить искусственно или наблюдать в природе. Существует даже классификация снежинок, но, несмотря на общие законы построения, снежинки все равно будут чуть-чуть отличаться друг от друга даже в случае относительно простых структур.
Рис. 1. Кристаллическая структура льда
Так почему же снежинки шестиугольны? В кристаллической структуре льда каждая молекула воды участвует в 4 водородных связях, направленных к вершинам тетраэдра под строго определенными углами, равными 109°28′ (при этом в структурах льда I, Ic, VII и VIII этот тетраэдр правильный). В центре этого тетраэдра находится атом кислорода, в двух вершинах — по атому водорода, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей. Теперь становится понятным, почему кристалл льда шестиугольный.
Главная особенность, определяющая форму кристалла — это связь между молекулами воды, подобная соединению звеньев в цепи. Кроме того, из-за различного соотношения тепла и влаги кристаллы, которые в принципе должны быть одинаковыми, приобретают различную форму. Сталкиваясь на своем пути с переохлажденными мелкими капельками, снежинка упрощается по форме, сохраняя при это симметрию.
Но почему иногда образуются снежинки вытянутой формы? Снежинка — это монокристалл льда, аналог гексагонального кристалла, но выросшего быстро, в неравновесных условиях. В одних условиях ледяные шестигранники усиленно растут вдоль своей оси, и тогда образуются снежинки вытянутой формы — снежинка-столбики, снежинки-иглы. В других условиях шестигранники растут преимущественно в направлениях, перпендикулярных к их оси, и тогда образуются снежинки в виде шестиугольных пластинок или шестиугольных звездочек.
Более подробно о снежинках и процессах их формирования читайте в статье Сергея Апресова “Белая магия”:
К. х. н. О. В. Мосин
ПОЧЕМУ СНЕЖИНКИ ШЕСТИУГОЛЬНЫ?
Чтобы понять, почему снежинки выглядят так красиво, необходимо рассмотреть историю жизни одного снежного кристалла.
Ледяные снежинки в облаке образуются при -15 градусах вследствие перехода водяного пара в твердое состояние. Основой для формирования снежинок являются мелкие частицы пыли или микроскопические льдинки, которые служат ядром для конденсации на них молекулы воды. Ядро кристаллизации — это то, с чего начинается образование снежинок.
Все больше и больше молекул воды присоединяются к растущей снежинке в определенных местах, придавая ей отчетливую форму шестигранника. Разгадка структуры твердой воды кроется в строении ее молекулы, которую можно упрощенно представить себе в виде тетраэдра — пирамиды с треугольным основанием в которой возможны углы лишь в 60° и 120°. В центре находится кислород, в двух вершинах — по водороду, точнее — протону, электроны которых задействованы в образовании ковалентной связи с кислородом. Две оставшиеся вершины занимают пары валентных электронов кислорода, которые не участвуют в образовании внутримолекулярных связей, отчего их называют неподеленными.
Снежинка — это монокристалл льда, вариация на тему гексагонального кристалла, но выросшего быстро, в неравновесных условиях. В одних условиях ледяные шестигранники усиленно растут вдоль своей оси, и тогда образуются снежинки вытянутой формы — снежинка-столбики, снежинки-иглы. В других условиях шестигранники растут преимущественно в направлениях, перпендикулярных к их оси, и тогда образуются снежинки в виде шестиугольных пластинок или шестиугольных звездочек.
К падающей снежинке может примерзнуть капелька воды — в результате образуются снежинки неправильной формы. Распространенное мнение, будто снежинки обязательно имеют вид шестиугольных звездочек, является ошибочным. Формы снежинок оказываются весьма разнообразными.
Астроном Иоганн Кеплер в 1611 году написал целый трактат «О шестиугольных снежинках». В 1665 году Роберт Гук увидел с помощью микроскопа и опубликовал множество рисунков снежинок самой разной формы. Первую удачную фотографию снежинки под микроскопом сделал в 1885 году американский фермер Уилсон Бентли. Самые знаменитые последователи дела Бентли — это Укихиро Накайя и американский физик Кеннет Либбрехт. Накайя впервые предположил, что величина и форма снежинок зависят от температуры воздуха и содержания в нем влаги, и блистательно подтвердил эту гипотезу экспериментально, выращивая в лаборатории кристаллы льда разной формы. А Либбрехт у себя в Калифорнийском технологическом институте и по сей день целыми днями занят выращиванием снежинок Ученый, совместно с фотографом Патрисией Расмуссен планируют издать книгу, в которую войдут самые фотогеничные снежинки, некоторые из которых можно уже сейчас увидеть на его сайте SnowCrystals.com.
Существует еще одна тайна, присущая строению снежинки. В ней порядок и хаос сосуществуют вместе. В зависимости от условий получения твердое тело должно находиться либо в кристаллическом (когда атомы упорядочены), либо в аморфном (когда атомы образуют случайную сетку) состоянии. Снежинки же имеют гексагональную решетку, в которой атомы кислорода выстроены упорядочено, образуя правильные шестиугольники, а атомы водорода расположены хаотично. Однако связь между структурой кристаллической решетки и формой снежинки, которая больше молекулы воды в десять миллионов раз, неочевидна: если бы молекулы воды присоединялись к кристаллу в случайном порядке, форма снежинки получилась бы неправильной. Все дело в ориентации молекул в решетке и расположении свободных водородных связей, которое способствует образованию ровных граней.
Молекулы водяного пара с большей вероятностью заполняют пустоты, нежели пристают к ровным граням, потому что пустоты содержат больше свободных водородных связей. В результате снежинки принимают форму правильных шестиугольных призм с ровными гранями. Такие призмы падают с неба, при сравнительно небольшой влажности воздуха в самых разных температурных условиях.
Рано или поздно на гранях появляются неровности. Каждый бугорок притягивает к себе дополнительные молекулы, и начинает расти. Снежинка долго путешествует по воздуху, при этом шансы встретиться с новыми молекулами воды у выступающего бугорка несколько выше, чем у граней. Так на снежинке очень быстро вырастают лучи. Из каждой грани вырастает один толстый луч, так как молекулы не терпят пустоты. Из бугорков, образующихся на этом луче, вырастают ответвления. Во время путешествия крохотной снежинки все ее грани находятся в одинаковых условиях, что служит предпосылкой для роста одинаковых лучей на всех шести гранях. В идеальных лабораторных условиях, все шесть направлений снежинки растут симметрично и с аналогичными конфигурациями. В атмосфере большая часть снежинок это нерегулярные кристаллы у них лишь некоторые из шести ветвей могут быть симметричны.
В наши дни изучение снежинок превратилось в науку. Еще в 1555 году швейцарским исследователем Мангусом были сделаны зарисовки форм снежинок. В 1955 году русский ученый А. Заморский разделил снежинки на 9 классов и 48 видов. Это — пластинки, иглы, звезды, ежи, столбики, пушинки, запонки, призмы, групповые. Международная комиссия по снегу и льду приняла в 1951 году довольно простую классификацию кристаллов льда: пластинки, звездчатые кристаллы, столбцы или колонны, иглы, пространственные дендриты, столбцы с наконечниками и неправильные формы. И еще три вида обледенелых осадков: мелкая снежная крупка, ледяная крупка и град.
В 1932 году физик-ядерщик Укихиро Накайя, профессор Университета в Хоккайдо, занялся выращиванием искусственных снежных кристаллов, что позволило составить первую классификацию снежинок и выявить зависимость величины и формы этих образований от температуры и влажности воздуха. В городе Кага, расположенном на западном берегу острова Хонсю, существует основанный Укихиро Накайя Музей снега и льда, носящий теперь его имя, символично выстроен в виде трех шестиугольников. В музее хранится машина для получения снежинок. Накайа выделил среди снежинок 41 индивидуальный морфологический тип, а метеорологи С. Магано и Сю Ли в 1966 году описали уже 80 типов кристаллов.
При определенных условиях, при отсутствие ветра, падающие снежинки могут сцепляются друг с другом, образуя огромные снежные хлопья. Весной 1944 года в Москве выпали хлопья размером до 10 сантиметров в поперечнике, похожие на кружащиеся блюдца. А в Сибири наблюдались снежные хлопья диаметром до 30 сантиметров. Самая большая снежинка была зафиксирована в 1887 году в американской Монтане. Ее диаметр составил 38 см, а толщина – 20 см. Для этого феномена необходимо полнейшее безветрие, ведь чем дольше снежинки путешествуют, тем больше сталкиваются и сцепляются друг с другом. Поэтому при низкой температуре и сильном ветре снежинки сталкиваются в воздухе, крошатся и падают на землю в виде обломков — «алмазной пыли». Вероятность увидеть крупные снежинки существенно возрастает вблизи водоемов: испарения с озер и водохранилищ – это отличный строительный материал.
Образующий снежинку лед прозрачен, но когда их много, солнечный свет, отражаясь и рассеиваясь на многочисленных гранях, создает у нас впечатление белой непрозрачной массы — мы называем ее снегом. Снежинка белая, потому что вода очень хорошо поглощает красную и инфракрасную часть светового спектра. Замерзшая вода во многом сохраняет свойства воды жидкой. Солнечный свет, проходя сквозь слой снега или льда, теряет красные и желтые лучи, которые рассеиваются и поглощаются в нем, а насквозь проходит свет голубовато-зеленый, голубой или ярко-синий — в зависимости от того, какой толщины слой был на пути у света.
ФАКТЫ о снежинках
Снежинки образуют — снежный покров, который отражает в космос до 90% солнечного света.
В одном кубическом метре снега находится 350 миллионов снежинок, а по всей Земле — 10 в 24 степени.
Вес самой снежинки всего около миллиграмма, редко — 2…3. Тем не менее к концу зимы масса снежного покрова северного полушария планеты достигает 13 500 млрд тонн.
Снег бывает не только белым. В арктических и горных регионах розовый или даже красный снег — обычное явление. Виной тому водоросли, живущие между кристаллов. Но известны случаи, когда снег падал с неба уже окрашенный. Так, на Рождество 1969 года на территории Швеции выпал черный снег. Скорее всего, это впитанная из атмосферы копоть и промышленные загрязнения. В 1955 году около Даны, штат Калифорния, выпал фосфоресцирующий зеленый снег, унесший несколько жизней и причинивший тяжкий вред здоровью жителям, рискнувшим попробовать его на язык. Возникали разные версии этого феномена, даже атомные испытания в штате Невада. Однако, все они были отвергнуты и происхождение зеленого снега осталось тайной.
Источник