- Удельная теплота сгорания
- Виды топлива
- Удельная теплота сгорания топлива
- Твердое топливо
- Удельная теплота плавления
- Содержание
- Изменение внутренней энергии и температуры при плавлении
- Изменение внутренней энергии и температуры при отвердевании
- Удельная теплота плавления
- Удельная теплота плавления некоторых веществ
- Расчет количества теплоты, необходимого для плавления или отвердевания вещества
- Примеры задач
- Удельная теплоемкость вещества
- Нагревание и охлаждение
- Виды теплопередачи
- Теплопроводность
- Конвекция
- Излучение
- Удельная теплоемкость: понятие и формула для расчета
- Таблица удельных теплоемкостей
Удельная теплота сгорания
О чем эта статья:
Виды топлива
Человеку очень нужно тепло для всех процессов жизнедеятельности: например, для обогрева жилища, готовки, плавления металлов и получения других видов энергии. Чтобы получать тепло и свет, человек использует топливо. Когда люди впервые добыли огонь, без топлива тоже не обошлось — им послужила древесина.
Топливо — это любое вещество, выделяющее энергию в ходе определенных процессов.
Существует четыре группы видов топлива:
- твердое топливо,
- жидкое топливо,
- газообразное топливо,
- ядерное топливо.
К твердому топливу относятся:
Ископаемые твердые виды топлива, кроме сланцев, являются продуктом разложения органической массы растений. Торф — самый молодой из них, он представляет собой плотную массу, которая образовалась из перегнивших болотных растений. Уже не такие молодые (скажем, средних лет 🤣) бурые угли — это темная однородная масса, которая окисляется и рассыпается на свежем воздухе. Горючие сланцы — полезные ископаемые, дающие смолу. Каменные угли — ребята с повышенной прочностью и небольшой пористостью.
Жидкое топливо — это, например, бензин или нефть. Газообразное — это смесь, содержащая в себе водород и окись углерода.
В горючей части топлива всегда есть углерод, кислород, водород, сера и азот. Кислород в соединении с углеродом или водородом уменьшает тепло, которое выделяется в процессе горения. Азот переходит в продукты сгорания, не окисляясь. Сера — вредная примесь, при сгорании которой выделяется в 4 раза меньше теплоты, чем при сгорании углерода.
Под ядерным топливом обычно имеют в виду изотопы урана — подробнее об этом мы рассказали в статье «Ядерный реактор».
Удельная теплота сгорания топлива
Теплота сгорания топлива определяет количество полностью сгоревшего горючего и полученную при этом процессе энергию. Эта величина определяет энергетическую ценность топлива.
Удельная теплота фигурирует в формуле количества теплоты, выделяемого при сгорании топлива.
Количество теплоты, выделяемое при сгорании топлива
Q — количество теплоты [Дж]
q — удельная теплота сгорания [Дж/м 3 ]
m — масса [кг]
Удельная теплота сгорания — это табличная величина, которая определяется экспериментально достаточно непростыми методами.
Ниже представлены таблицы с некоторыми значениями удельной теплоты сгорания.
Твердое топливо
Вещество
Удельная теплота сгорания,
Источник
Удельная теплота плавления
Содержание
Рассматривая график плавления и отвердевания льда в прошлом уроке, мы выяснили, что во время процесса плавления температура льда не меняется. Температура продолжит расти только тогда, когда лед полностью перейдет в жидкость. То же самое мы наблюдали и при кристаллизации воды.
Но, когда лёд плавится, он все равно получает энергию. Ведь во время плавления мы не выключаем горелку – лёд получает какое-то количество теплоты от сгорающего в спиртовке (или другом нагревателе) топлива. Куда уходит эта энергия? Вы уже знаете закон сохранения энергии – энергия не может исчезнуть.
В данном уроке мы подробно рассмотрим, что происходит во время процесса плавления, как изменяется энергия и температура. Это позволит нам перейти к новому определению – удельной теплоте плавления.
Изменение внутренней энергии и температуры при плавлении
Так на что же уходит энергия, которую мы сообщаем телу, при плавлении?
Вы знаете, что в кристаллических твердых телах атомы (или молекулы) расположены в строгом порядке (рисунок 1). Они не двигаются так активно, как в газах или жидкостях. Тем не менее, они также находятся в тепловом движении – колеблются.
Взгляните еще раз на график плавления и отвердевания льда (рисунок 2).
Нагревание льда идет на участке AB. В это время увеличивается средняя скорость движения его молекул. Значит, возрастает и их средняя кинетическая энергия и температура. Размах колебаний атомов (или молекул) увеличивается.
Так происходит то того момента, пока нагреваемое тело не достигнет температуры плавления.
При температуре плавления нарушается порядок в расположении частиц в кристаллах.
Так вещество начинает переход из твердого состояния в жидкое.
Значит, энергия, которую получает тело после достижения температуры плавления, расходуется на разрушение кристаллической решетки. Поэтому температура тела не повышается – участок графика BC.
Изменение внутренней энергии и температуры при отвердевании
При отвердевании происходит обратное.
Средняя скорость движения молекул и их средняя кинетическая энергия в жидкости (расплавленном веществе) уменьшается при охлаждении. Этому соответствует участок графика DE на рисунке 2.
Теперь силы притяжения между молекулами могут удерживать их друг около друга. Расположение частиц становится упорядоченным – образуется кристалл (участок графика EF).
Куда расходуется энергия, которая выделяется при кристаллизации? Температура тела остается постоянной во время этого процесса. Значит, энергия расходуется на поддержание этой температуры, пока тело полностью не отвердеет.
Теперь мы можем сказать, что
При температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твёрдом состоянии.
Эта избыточная энергия выделяется при кристаллизации и поддерживает температуру тела на одном уровне во время всего процесса отвердевания.
Удельная теплота плавления
Опытным путем доказано, что для превращения твердых кристаллических тел одинаковой массы в жидкость необходимо разное количество теплоты. Тела при этом рассматриваются при их температурах плавления.
Удельная теплота плавления – это физическая величина, показывающая, какое количество теплоты необходимо сообщить кристаллическому телу массой $1 \space кг$, чтобы при температуре плавления полностью перевести его в жидкое состояние.
- обозначается буквой $\lambda$
- единица измерения – $1 \frac<Дж><кг>$
Удельная теплота плавления некоторых веществ
В таблице 1 представлены экспериментально полученные величины удельной теплоты плавления для некоторых веществ.
Вещество | $\lambda, \frac<Дж><кг>$ | Вещество | $\lambda, \frac<Дж><кг>$ |
Алюминий | $8.9 \cdot 10^5$ | Сталь | $0.84 \cdot 10^5$ |
Лёд | $3.4 \cdot 10^5$ | Золото | $0.67 \cdot 10^5$ |
Железо | $2.7 \cdot 10^5$ | Водород | $0.59 \cdot 10^5$ |
Медь | $2.1 \cdot 10^5$ | Олово | $0.59 \cdot 10^5$ |
Парафин | $1.5 \cdot 10^5$ | Свинец | $0.25 \cdot 10^5$ |
Спирт | $1.1 \cdot 10^5$ | Кислород | $0.14 \cdot 10^5$ |
Серебро | $0.87 \cdot 10^5$ | Ртуть | $0.12 \cdot 10^5$ |
Таблица 1. Удельная теплота плавления некоторых веществ (при нормальном атмосферном давлении)
Удельная теплота плавления золота составляет $0.67 \cdot 10^5 \frac<Дж><кг>$. Что это означает?
Для того, чтобы расплавить кусок золота массой $1 \space кг$, взятого при температуре $1064 \degree C$ (температура плавления золота), до жидкого состояния, нам потребуется затратить $0.67 \cdot 10^5 \space Дж$ энергии.
Опытным путём доказано, что
при отвердевании кристаллического вещества выделяется точно такое же количество теплоты, которое поглощается при его плавлении.
То есть, при кристаллизации расплавленного золота массой $1 \space кг$ выделится $0.67 \cdot 10^5 \space Дж$ энергии.
Расчет количества теплоты, необходимого для плавления или отвердевания вещества
Чтобы вычислить количество теплоты $Q$, необходимое для плавления кристаллического тела массой $m$, взятого при его температуре плавления и нормальном атмосферном давлении, нужно удельную теплоту плавления $\lambda$ умножить на массу тела $m$:
$Q = \lambda m$.
Мы можем выразить из этой формулы массу $m$ и удельную теплоту плавления $\lambda$:
Количество теплоты, которое выделится при отвердевании, рассчитывается по этой же формуле. Но при этом необходимо помнить, что внутренняя энергия тела будет уменьшаться.
Примеры задач
- В кастрюлю положили лёд массой $2 \space кг$. Его температура была равна $0 \degree C$. Рассчитайте количество энергии, которое понадобилось, чтобы полностью растопить лёд и превратить его в кипяток с температурой $100 \degree C$. Количество теплоты, затраченное на нагревание кастрюли не учитывать.
Рассчитайте количество энергии, которое понадобится для превращения в кипяток ледяной воде той же массы и температуры, что и лёд.
Для расчёта нам понадобится значение удельный теплоемкости воды $c$, которое можно посмотреть в таблице.
Дано:
$m = 2 \space кг$
$t_1 = 0 \degree C$
$t_2 = 100 \degree C$
$\lambda = 3.4 \cdot 10^5 \frac<Дж><кг>$
$с = 4.2 \cdot 10^3 \frac<Дж><кг \cdot \degree C>$
Посмотреть решение и ответ
Решение:
Чтобы рассчитать количество теплоты, которое понадобиться, чтобы превратить лёд в кипящую воду, нам понадобиться сначала его расплавить. Количество теплоты $Q_1$, затраченное на плавление льда, рассчитаем по формуле $Q_1 = \lambda m$.
$Q_1 = 3.4 \cdot 10^5 \frac<Дж> <кг>\cdot 2 \space кг = 6.8 \cdot 10^5 \space Дж$
Теперь у нас есть вода с температурой $0 \degree C$. Для расчёта количества теплоты $Q_2$, необходимого для нагревания воды используем формулу $Q_2 = cm(t_2 – t_1)$.
$Q_2 = 4.2 \cdot 10^3 \frac<Дж> <кг \cdot \degree C>\cdot 2 \space кг \cdot (100 \degree C – 0 \degree C) = 8.4 \cdot 10^3 \frac<Дж> <кг>\cdot 100 \degree C = 8.4 \cdot 10^5 \space Дж$.
Тогда, для превращения куска льда в кипяток нам потребуется количество теплоты:
$Q = Q_1 + Q_2 = 6.8 \cdot 10^5 \space Дж + 8.4 \cdot 10^5 \space Дж = 15.2 \cdot 10^5 \space Дж$.
Если теперь мы возьмем вместо льда воду при $0 \degree C$, то для ее превращения в кипяток, нужно просто ее нагреть. Это количество теплоты мы уже рассчитали:
$Q_2 = 8.4 \cdot 10^5 \space Дж$.
Ответ: $Q = 15.2 \cdot 10^5 \space Дж$, $Q_2 = 8.4 \cdot 10^5 \space Дж$.
- Сколько энергии потребуется для того, чтобы расплавить железо массой $10 \space кг$ с начальной температурой $29 \degree C$?
Удельная теплоемкость железа – $460 \frac<Дж><кг \cdot \degree C>$, температура плавления – $1539 \degree C$.
Дано:
$m = 10 \space кг$
$t_1 = 29 \degree C$
$t_2 = 1539 \degree C$
$c = 460 \frac<Дж><кг \cdot \degree C>$
$\lambda = 2.7 \cdot 10^5 \frac<Дж><кг>$
Посмотреть решение и ответ
Решение:
Чтобы рассчитать общее затраченное количество теплоты $Q = Q_1 + Q_2$, нужно рассчитать отдельно количество теплоты $Q_1$, затраченное на нагревание железа до температуры плавления, и количество теплоты $Q_2$, затраченное на его плавление.
$Q_1 = cm(t_2 – t_1)$.
$Q_1 = 460 \frac<Дж> <кг \cdot \degree C>\cdot 10 \space кг \cdot (1539 \degree C – 19 \degree C) = 4600 \frac<Дж> <\degree C>\cdot 1510 \degree C = 6 \space 946 \space 000 \space Дж \approx 69 \cdot 10^5 \space Дж$.
$Q_2 = \lambda m$.
$Q_2 = 2.7 \cdot 10^5 \frac<Дж> <кг>\cdot 10 \space кг = 27 \cdot 10^5 \space Дж$.
$Q = Q_1 + Q_2 = 69 \cdot 10^5 \space Дж + 27 \cdot 10^5 \space Дж = 96 \cdot 10^5 \space Дж$.
Ответ: $Q = 96 \cdot 10^5 \space Дж$.
- На заводе охлаждают стальную деталь от $800 \degree C$ до $0 \degree C$. При этом она растопила лёд массой $3 \space кг$, взятый при $0 \degree C$. Определите массу детали, если вся выделенная ей энергия пошла на растопку льда.
Удельная теплоемкость стали – $500 \frac<Дж><кг \cdot \degree C>$.
Дано:
$m_1 = 3 \space кг$
$\lambda_1 = 3.4 \cdot 10^5 \frac<Дж><кг>$
$c_2 = 500 \frac<Дж><кг \cdot \degree C>$
$t_1 = 800 \degree C$
$t_2 = 0 \degree C$
Посмотреть решение и ответ
Решение:
При плавлении лёд поглотит количество теплоты $Q_1 = \lambda_1 m_1$.
При охлаждении стальная деталь выделит количество теплоты $Q_2 = c_2m_2(t_2 – t_1)$.
По закону сохранения энергии эти энергии будут равны:
$Q_1 = Q_2$.
Т.е., $\lambda_1 m_1 = c_2m_2(t_2 – t_1)$.
Ответ: $m_2 = 2.55 \space кг$.
Источник
Удельная теплоемкость вещества
О чем эта статья:
Нагревание и охлаждение
Эти два процесса знакомы каждому. Вот нам захотелось чайку, и мы ставим чайник, чтобы нагреть воду. Или ставим газировку в холодильник, чтобы охладить.
Логично предположить, что нагревание — это увеличение температуры, а охлаждение — ее уменьшение. Все, процесс понятен, едем дальше.
Но не тут-то было: температура меняется не «с потолка». Все завязано на таком понятии, как количество теплоты. При нагревании тело получает количество теплоты, а при нагревании — отдает.
- Количество теплоты — энергия, которую получает или теряет тело при теплопередаче.
В процессах нагревания и охлаждения формулы для количества теплоты выглядят так:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует и изменение температуры, о котором мы сказали выше, и удельная теплоемкость, речь о которой пойдет дальше.
А вот теперь поговорим о видах теплопередачи.
Виды теплопередачи
- Теплопередача — это физический процесс передачи тепловой энергии от более нагретого тела к менее нагретому.
Здесь все совсем несложно, их всего три: теплопроводность, конвекция и излучение.
Теплопроводность
Тот вид теплопередачи, который можно охарактеризовать, как способность тел проводить энергию от более нагретого тела к менее нагретому.
Речь о том, чтобы передать тепло с помощью соприкосновения. Признавайтесь, грелись же когда-нибудь возле батареи. Если вы сидели к ней вплотную, то согрелись вы благодаря теплопроводности. Обниматься с котиком, у которого горячее пузо, тоже эффективно.
Порой мы немного перебарщиваем с возможностями этого эффекта, когда на пляже ложимся на горячий песок. Эффект есть, только не очень приятный. Ну а ледяная грелка на лбу дает обратный эффект — ваш лоб отдает тепло грелке.
Конвекция
Когда мы говорили о теплопроводности, мы приводили в пример батарею. Теплопроводность — это когда мы получаем тепло, прикоснувшись к батарее. Но все вещи в комнате к батарее не прикасаются, а комната греется. Здесь вступает конвекция.
Дело в том, что холодный воздух тяжелее горячего (холодный просто плотнее). Когда батарея нагревает некий объем воздуха, он тут же поднимается наверх, проходит вдоль потолка, успевает остыть и спуститься обратно вниз — к батарее, где снова нагревается. Таким образом, вся комната равномерно прогревается, потому что все более горячие потоки сменяют все менее холодные.
Излучение
Пляж мы уже упоминали, но речь шла только о горячем песочке. А вот тепло от солнышка — это излучение. В этом случае тепло передается через волны.
Обоими способами. То тепло, которое мы ощущаем непосредственно от камина (когда лицу горячо, если вы расположились слишком близко к камину) — это излучение. А вот прогревание комнаты в целом — это конвекция.
Удельная теплоемкость: понятие и формула для расчета
Формулы количества теплоты для нагревания и охлаждения мы уже разбирали, но давайте еще раз:
Нагревание
Охлаждение
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
В этих формулах фигурирует такая величина, как удельная теплоемкость. По сути своей — это способность материала получать или отдавать тепло.
С точки зрения математики удельная теплоемкость вещества — это количество теплоты, которое надо к нему подвести, чтобы изменить температуру 1 кг вещества на 1 градус Цельсия:
Удельная теплоемкость вещества
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Также ее можно рассчитать через теплоемкость вещества:
Удельная теплоемкость вещества
c — удельная теплоемкость вещества [Дж/кг*˚C]
C — теплоемкость вещества [Дж/˚C]
Величины теплоемкость и удельная теплоемкость означают практически одно и то же. Отличие в том, что теплоемкость — это способность всего вещества к передаче тепла. То есть формулу количества теплоты для нагревания тела можно записать в таком виде:
Количество теплоты, необходимое для нагревания тела
Q — количество теплоты [Дж]
c — удельная теплоемкость вещества [Дж/кг*˚C]
tконечная — конечная температура [˚C]
tначальная — начальная температура [˚C]
Таблица удельных теплоемкостей
Удельная теплоемкость — табличная величина. Часто ее указывают в условии задачи, но при отсутствии в условии — можно и нужно воспользоваться таблицей. Ниже приведена таблица удельных теплоемкостей для некоторых (многих) веществ.
Источник