- Лед: обычный и необычный
- Свойства льда: строение, механические и физические свойства льда
- Строение льда
- Структура кристаллов
- Формы льда
- Свойства льда
- Физические свойства
- Механические свойства льда
- Вещество лед его свойства
- Содержание
- Основные свойства водного льда
- Лёд на Земле
- В океане
- Лёд в космосе
- Использование льда в технике
- Фазы льда
Лед: обычный и необычный
Лед – это вода, но в твёрдом состоянии, это одно из наиболее странных, соблазнительных и завораживающих веществ в природе. Он всегда полон противоречий и загадок, разгадать которые до конца пока не удалось никому. Лед на первый взгляд прозрачен, но способен сиять всеми цветами радуги. Он способен разрушить камень или утопить корабли, и в то же время умеет исчезать (таять) буквально в считанные секунды. Он принимает самые разнообразные и причудливые формы – от маленькой снежинки до ледников весом в миллионы тонн, которые являются одной из самых разрушительных сил природы. Известно более 15 структурных модификаций льда. Лед есть и в космосе, и на Земле. Давайте попробуем разобраться, как можно использовать лёд и что нужно знать о нём и связанных с ним физических явлениях.
Человек перемещается по поверхности Земли или пешком, или при помощи наземного транспорта: автомобиль, автобус, трамвай, поезд и так далее. Самое удивительное, что определяющей силой, благодаря которой происходит движение в обоих случаях, является сила трения. Эта сила согласно закону Амонтона-Кулона равна произведению коэффициента трения на силу нормального давления, с которой ноги человека или колеса транспорта действуют на поверхность движения:
В зимнее время все дороги, как правило, покрыты снегом, а иногда наблюдается и гололед, что существенно уменьшает коэффициент трения, помогающий нам в движении. В частности, коэффициент трения шин автомобиля уменьшается практически в два раза. Это приводит к значительному уменьшению устойчивости автомобиля на дороге, что может привести к заносу. Поэтому в зимнее время при движении по заснеженной или покрытой льдом дороге необходимо использовать специальную зимнюю резину, а для усиления еще и шипованную. Аналогичная ситуация происходит при движении человека пешком. Поэтому для предотвращения непредвиденных падений рекомендуется использовать обувь с профильной и прорезиненной подошвой, а ходить лучше по дороге, посыпанной песком, который в несколько раз увеличивает силу трения.
С другой стороны, благодаря льду и снегу, которые имеют очень маленький коэффициент трения, существую такие виды спорта, как фигурное катание, хоккей, лыжные и конькобежные виды спорта, бобслей, сноуборд и т.д. Для того чтобы было хорошее скольжение, коньки должны иметь специальную форму и быть хорошо заточенными. Кроме того, высокое давление, которое оказывают коньки на лед, превращает поверхностный лед в воду, что существенно увеличивает скольжение. После того как коньки перестали давить на лед, образовавшаяся вода опять замерзает и превращается в лед. Чтобы увеличить скорость движения на лыжах, в зависимости от погоды и состояния снега, необходимо использовать специальные мази, увеличивающие скольжение на концах лыж и увеличивающие трение по центру для лучшего отталкивания.
Образование льда из воды может происходить совершенно необычно, если взять пластиковую бутылку с водой, охлажденной до 0 0 С, и с силой поставить ее на стол, то вода начнет превращаться в лед, причем это будет происходить буквально на наших глазах. Аналогичное явление будет происходить, если в сосуд с охлажденной до 0 0 С водой бросить кусок льда. Так можно быстро превратить достаточно холодную воду в лед.
Вода – единственное вещество, плотность которого в твердом состоянии меньше, чем в жидком. Молекулы воды хотя и близко расположены, но слабо связаны друг с другом, связи между ними постоянно создаются и разрушаются. При охлаждении до 0 0 С связи быстро стабилизируются, создавая гексагональную решетку – ледяной кристалл, в котором молекулы воды находятся на большем расстоянии, чем в жидком состоянии. Поэтому плотность льда меньше, чем воды. Другие вещества этим свойством не обладают, что видно из следующей таблицы:
Источник
Свойства льда: строение, механические и физические свойства льда
Лед – это твердое вещество, находящееся агрегатном состоянии, которому свойственно иметь газообразную или жидкую форму при комнатной температуре. Свойства льда начали изучать сотни лет назад. Около двухсот лет тому назад ученые обнаружили, что вода – не простое соединение, а сложный химический элемент, состоящий из кислорода и водорода. После открытия формула воды стала иметь вид Н2О.
Строение льда
Н2О состоит из двух атомов водорода и одного атома кислорода. В спокойном состоянии водород располагается на вершинах атома кислорода. Ионы кислорода и водорода должны занимать вершины равнобедренного треугольника: кислород располагается на вершине прямого угла. Такое строение воды называется диполем.
Лед состоит на 11.2% процента из водорода, а остальное – это кислород. Свойства льда зависят от его химического строения. Иногда в нем присутствуют газообразные или механические образования – примеси.
Лед встречается в природе в виде немногочисленных кристаллических видов, которые устойчиво сохраняют свое строение при температурах от нуля и ниже, но при нуле и выше он начинает плавиться.
Структура кристаллов
Свойства льда, снега и пара совершенно разные и зависят от структуры кристаллов. В твердом состоянии Н2О находится в окружении четырех молекул, расположенных в углах тетраэдра. Так как координационная численность низкая, то лед может иметь ажурную структуру. Это отображается на свойствах льда и его плотности.
Формы льда
Лед относится к распространенным в природе веществам. На Земле есть следующие его разновидности:
Есть лед, напрямую образующийся сублимационным путем, т.е. от парообразного состояния. Такой вид принимает скелетовидную форму (мы их называем снежинки) и агрегатов дендритного и скелетного роста (изморозь, иней).
Одной из самых распространенных форм являются сталактиты, т. е. сосульки. Они растут по всему миру: на поверхности Земли, в пещерах. Этот вид льда образуется путем стекания капель воды при разнице температур около нуля градусов в осенне-весенний период.
Образования в виде ледяных полос, появляющихся по краям водоемов, на границе воды и воздуха, а также по краю луж, называются ледяными заберегами.
Лед может образовываться в пористых грунтах в виде волокнистых прожилок.
Свойства льда
Вещество может находиться в разных состояниях. Исходя из этого, возникает вопрос: а какое свойство льда проявляется в том или ином состоянии?
Ученые выделяют физические и механические свойства. Каждое из них имеет свои особенности.
Физические свойства
К физическим свойствам льда относят:
- Плотность. В физике неоднородная среда представлена пределом отношения массы вещества самой среды к объему, в котором она заключена. Плотность воды, как и других веществ, является функцией температур и давления. Обычно в расчетах используют постоянную плотность воды, равную 1000 кг/м 3 . Более точный показатель плотности учитывается только тогда, когда необходимо очень точно провести расчеты ввиду важности получаемого результата разности плотностей.
При проведении расчетов плотности льда учитывается, какая вода стала льдом: как известно, плотность соленой воды выше, чем дистиллированной. - Температура воды. Обычно кристаллизация воды происходит при температуре ноль градусов. Процессы замерзания происходят скачками с выделением теплоты. Обратный процесс (таяние) происходит при поглощении того же количества тепла, которое было выделено, но без скачков, а постепенно.
В природе встречаются условия, при которых происходит переохлаждение воды, но она не замерзает. Некоторые реки сохраняют жидкое состояние воды даже при температуре -2 градуса. - Теплоемкость. Это количество теплоты, которое поглощается при нагревании тела на каждый градус. Есть удельная теплоемкость, которая характеризуется количеством теплоты, необходимой для нагрева килограмма дистиллированной воды на один градус.
- Сжимаемость. Еще одно физическое свойство снега и льда – сжимаемость, влияющая на уменьшение объема под воздействием повышенного внешнего давления. Обратная величина называется упругостью.
- Прочность льда.
- Цвет льда. Это свойство зависит от поглощения света и рассеивания лучей, а также от количества примесей в замерзшей воде. Речной и озерный лед без посторонних примесей виден в нежно-голубом свете. Морской лед может быть совершенно другим: голубым, зеленым, синим, белым, коричневым, иметь стальной оттенок. Иногда можно увидеть черный лед. Такой цвет он приобретает из-за большого количества минералов и различных органических примесей.
Механические свойства льда
Механические свойства льда и воды определяются сопротивлением воздействию внешней среды по отношению к единице площади. Механические свойства зависят от структуры, солености, температуры и пористости.
Лед – это упругое, вязкое, пластичное образование, но бывают условия, при которых он становится твердым и очень хрупким.
Морской лед и пресноводный различаются: первый намного пластичнее и менее прочный.
При прохождении кораблей обязательно учитываются механические свойства льда. Также это важно при использовании ледяных дорог, переправ и не только.
Вода, снег и лед обладают схожими свойствами, которые определяют характеристики вещества. Но в то же время на эти показания влияют и многие другие факторы: температура окружающей среды, примеси в твердом веществе, а также исходный состав жидкости. Лед — это одно из самых интересных веществ на Земле.
Источник
Вещество лед его свойства
В широком смысле, лёд — это твёрдое состояние такого неметаллического вещества, которое при стандартной температуре и давлении находится в жидком или газообразном состоянии. Например, сухой лёд, аммиачный лёд или метановый лёд.
Содержание
Основные свойства водного льда
Лёд может существовать в трёх аморфных разновидностях и 15 кристаллических модификациях. Фазовая диаграмма на рисунке справа показывает при каких температурах и давлениях существуют некоторые из этих модификаций (более полное описание см.ниже).
В природных условиях Земли лёд представлен, главным образом, одной кристаллической модификацией, кристаллизующейся в гексагональной сингонии (лёд Ih). Во льду Ih каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, находящимися на одинаковых расстояниях от неё, равных 2,76 Å и размещенных в вершинах правильного тетраэдра.
Ажурная структура такого льда приводит к тому, что его плотность, равная 916,7 кг/м³ при 0°C, ниже плотности воды (999,8 кг/м³) при той же температуре. Поэтому вода, превращаясь в лёд, увеличивает свой объём примерно на 9 %. Кроме того, лёд, будучи легче жидкой воды, образуется на поверхности водоёмов, что препятствует дальнейшему замерзанию воды.
Высокая удельная теплота плавления льда, равная 330 кДж/кг, (для сравнения — удельная теплоты плавления железа равна 270 кДж/кг), служит важным фактором в обороте тепла на Земле. Так, чтобы растопить 1 кг льда или снега, нужно столько же тепла, чтобы нагреть литр воды до 80°C
Лёд встречается в природе в виде собственно льда (материкового, плавающего, подземного), а также в виде снега, инея и т. д. Под действием собственного веса лёд приобретает пластические свойства и текучесть.
Природный лёд обычно значительно чище, чем вода, так как при кристаллизации воды в первую очередь в решётку встают молекулы воды (см. зонная плавка). Лёд может содержать механические примеси — твёрдые частицы, капельки концентрированных растворов, пузырьки газа. Наличием кристалликов соли и капелек рассола объясняется солоноватость морского льда.
Искусственный лёд получается охлаждением, происходящим при растворении некоторых солей в воде или кислотах или охлаждением при испарении жидкостей в разрежённом пространстве.
Лёд на Земле
Общие запасы льда на Земле около 30 млн км³. Основные запасы льда на Земле сосредоточены в полярных шапках (главным образом, в Антарктиде, где толщина слоя льда достигает 4 км).
В океане
Вода в мировом океане солёная и это препятствует образованию льда, поэтому лёд образуется только в полярных и субполярных широтах, где зима долгая и очень холодная. Замерзают некоторые неглубокие моря, расположенные в умеренном поясе. Различают однолетние и многолетние льды. Морской лёд может быть неподвижным, если связан с сушей, или плавучим, то есть дрейфующим. В океане встречаются льды, отколовшиеся от ледников суши и спустившиеся в океан в результате абляции, — айсберги.
Лёд в космосе
Имеются данные о наличии льда на планетах Солнечной системы и в ядрах комет. Изо льда сложена поверхность Европы — спутника Юпитера.
Использование льда в технике
Ледяная гидросмесь. В конце 1980-х годов лаборатория Аргонн разработала технологию изготовления ледяной гидросмеси (Ice Slurry), способной свободно течь по трубам различного диаметра, не собираясь в ледяные наросты, не слипаясь и не забивая системы охлаждения [1] . Солёная водяная суспензия состояла из множества очень мелких ледяных кристалликов округой формы. Благодаря этому сохраняется подвижность воды и, одновременно, с точки зрения теплотехники она представляет собой лёд, который в 5—7 раз эффективнее простой холодной воды в системах охлаждения зданий. Кроме того, такие смеси перспективны для медицины. Опыты на животных показали, что микрокристаллы смеси льда прекрасно проходят в довольно мелкие кровеносные сосуды и не повреждают клетки. «Ледяная кровь» удлиняет время, в течение которого можно спасти пострадавшего. Скажем, при остановке сердца это время удлиняется, по осторожным оценкам, с 10—15 до 30—45 минут.
Фазы льда
Фаза | Характеристики [2] [3] |
---|---|
Аморфный лёд | Аморфный лёд не обладает кристаллической структурой. Он существует в трех формах: аморфный лёд низкой плотности (LDA), образующийся при атмосферном давлении и ниже, аморфный лёд высокой плотности (HDA) и аморфный лёд очень высокой плотности (VHDA), образующийся при высоких давлениях. Лёд LDA получают очень быстрым охлаждением жидкой воды («сверхохлажденная стекловидная вода», HGW), или конденсацией водяного пара на очень холодной подложке («аморфная твёрдая вода», ASW), или путем нагрева высокоплотностных форм льда при нормальном давлении («LDA»). |
Лёд Ih | Обычный гексагональный кристаллический лёд. Практически весь лёд на Земле относится ко льду Ih, и только очень малая часть — ко льду Ic. |
Лёд Ic | Метастабильный кубический кристаллический лёд. Атомы кислорода расположены как в кристаллической решётке алмаза. Его получают при температуре в диапазоне 130—150 K, он остается устойчивым до 200 K, а при дальнейшем нагреве переходит в лёд Ih. Он изредка встречается в верхних слоях атмосферы. |
Лёд II | Тригональный кристаллический лёд с высокоупорядоченной структурой. Образуется изо льда Ih при сжатии и температурах 190—210 K. При нагреве он преобразуется в лёд III. |
Лёд III | Тетрагональный кристаллический лёд, который возникает при охлаждении воды до 250 K и давлении 300 МПа. Его плотность больше, чем у воды, но он наименее плотный из всех разновидностей льда в зоне высоких давлений. |
Лёд IV | Метастабильный тригональный лёд. Его трудно получить без нуклеирующей затравки. |
Лёд V | Моноклинный кристаллический лёд. Возникает при охлажении воды до 253 K и давлении 500 МПа. Обладает самой сложной структурой по сравнению со всеми другими модификациями. |
Лёд VI | Тетрагональный кристаллический лёд. Образуется при охлажении воды до 270 K и давлении 1,1 ГПа. В нём проявляется дебаевская релаксация. |
Лёд VII | Кубическая модификация. Нарушено расположение атомов водорода; в веществе проявляется дебаевская релаксация. Водородные связи образуют две взаимопроникающие решётки. |
Лёд VIII | Более упорядоченный вариант льда VII, где атомы водорода занимают, очевидно, фиксированные положения. Образуется изо льда VII при его охлаждении ниже 5 °C. |
Лёд IX | Тетрагональная метастабильная модификация. Постепенно образуется изо льда III при его охлаждении от 208 K до 165 K, стабилен при температуре ниже 140 K и давлениях между 200 и 400 МПа. Его плотность 1,16 г/см³, то есть, несколько выше, чем у обычного льда. |
Лёд X | Симметричный лёд с упорядоченным расположением протонов. Образуется при давлениях около 70 ГПа. |
Лёд XI | Ромбическая низкотемпературная равновесная форма гексагонального льда. Является сегнетоэлектриком. |
Лёд XII | Тетрагональная метастабильная плотная кристаллическая модификация. Наблюдается в фазовом пространстве льда V и льда VI. Можно получить нагреванием аморфного льда высокой плотности от 77 K до примерно 183 K и при давлении 810 МПа. |
Лёд XIII | Моноклинная кристаллическая разновидность. Получается при охлаждении воды ниже 130 K и давлении 500 МПа. Разновидность льда V с упорядоченным расположением протонов. |
Лёд XIV | Ромбическая кристаллическая разновидность. Получается при температуре ниже 118 K и давлении 1,2 ГПа. Разновидность льда XII с упорядоченным расположением протонов. |
Лёд XV | Предсказанная (но ещё не подтвержденная) разновидность льда VI с упорядоченным расположением протонов. Предполагается, что можно получить путем охлажения воды примерно до 108—80 K и давлении 1,1 ГПа. |
Новые исследования формирования водяного льда на ровной поверхности меди при температурах 100—140 K показали, что сначала на поверхности возникают цепочки молекул шириной около 1 нм не гексагональной, а пентагональной структуры [4] .
Источник