Виды охлаждение лед ламп

Виды системы охлаждения светодиодных автоламп

О преимуществах светодиодных автоламп сказано немало. Еще бы, при минимальном потреблении электроэнергии, лампочка производит ярчайший луч света, оттенок которого будет легче всего восприниматься глазом человека. Элемент ударостоек, водонепроницаем и не имеет нити накаливания, что говорит об отсутствии угрозы перегорания. Таким образом, лампы данного типа позволяют получить стильное освещение на максимально долгий срок. Не удивительно, что светодиодные автолампы сейчас применяются во всех функциональных частях системы освещения: головной свет, габариты, сигнальные огни, освещение салона и прочие.

Система освещения настолько хорошо продумана, что даже те особенности, которые могли бы стать недостатками, нейтрализуются за счет соответствующих систем усовершенствования. Одним из таких усовершенствований LED автолампы является система охлаждения элемента.

Что это и для чего нужно

Светодиодные автолампы в перечне своих преимуществ имеют тот факт, что излучение света происходит не за счет нагрева. При этом, автомобильные светодиоды, при работе все же несколько нагреваются. А вот снижение температуры их нагрева способствует улучшению качества освещения.

По этой причине и для того, чтобы предотвратить перегрев, который, в принципе, негативно сказывается на работе всей электроники, применяется особая структура элемента. А именно – в лампочку встраивается охлаждающая система, которая отводит излишнюю температуру. Это гарантирует стабильное освещение и длительную работу ламп. Такие системы устанавливаются в автолампах, имеющих высокую, в рамках технологии, мощность работы (25 Вт и более). Другими словами, система охлаждения важна для лампочек, устанавливаемых в головное освещение: ближний/дальний свет, противотуманные фары (ПТФ).

Читайте также:  Как сделать ведро льда

Виды систем охлаждения LED автоламп

В зависимости от принципа функционирования, выделяются виды систем охлаждения для LED автоламп. Их всего два:

Активная система охлаждения ЛЕД автоламп представляет собой механический прибор (вентилятор или компрессор). Такая система обеспечивает постоянное охлаждение лампочки за счет создания воздушного потока. Причем, с учетом скорости такого потока, охлаждение системы происходит моментально. По способам размещения в подкапотном пространстве, активная система охлаждения может быть, как вмонтирована в радиатор, так и прикрепляться сверху или идти в комплекте с лампочкой.

Пассивная система охлаждения ЛЕД автоламп имеет несколько иной принцип работы. Здесь все максимально просто: через радиатор на элементе, тепло, вырабатываемое лампочкой, передается в окружающий воздух. Чем больше проникновение воздушных масс в радиатор, тем эффективнее его работа. Пассивные системы хороши своей простотой, легкостью и компактностью.

Радиатор может представлять собой привычную многим автомобилистам решетку или ленту. Ленточный радиатор представляет собой конструкцию из сплетенных проводов, имеющих разные показатели длины и ширины. Такая пассивная система обеспечивает охлаждение за счет выведения температуры на шлейф. За счет возможности подбирать разные размерные характеристики, такой радиатор отлично подходит для установки в моделях авто с ограниченным свободным пространством.

Таким образом, прежде, чем купить светодиодные автолампы, важно озаботиться системой их охлаждения. Качественные устройства изготавливаются из высокопрочных материалов с высоким уровнем стойкости к проникновению пыли и влаги. А потому стабильная и длительная служба лампочки будет полностью защищена от перегрева.

Источник

Охлаждение светодиодных светильников. Теплоотведение

Введение

Светодиодные светильники прочно вошли в нашу жизнь, их можно встретить почти в каждом доме, на предприятиях, в различных учреждениях, на улице.

Они способствуют экономии электроэнергии, надежны, обладают продолжительным сроком эксплуатации, а также целым набором технических характеристик, обеспечивающих этим светильникам преимущество перед осветительными приборами предыдущих поколений.

Светодиодные светильники выделяют меньше тепла, чем большинство светильников с другими источниками света. Но, тем не менее, во время работы устройства происходит естественный нагрев светодиодов. При плохом теплоотводе температура светодиодов может быть выше допустимой для их нормальной работы. Если повышенная температура светодиодов будет сохраняться постоянно, через некоторое время произойдет деградация люминофора, изменится цветовая температура диодов. А так же снизится световой поток, при том что энергопотребление останется прежним, то есть снизится энергоэффективность, и заметно уменьшится продолжительность срока эксплуатации светильника.

Как избежать деградации светодиодов и продлить срок их службы

Ответ прост. Нужно обеспечить теплоотвод от светодиодного модуля. Как это сделать? Использовать радиатор. Радиатор — это конструктивный элемент светильника, который служит для отвода и рассеивания тепла от светодиодного модуля и, соответственно, его охлаждения.

Какие материалы используются для изготовления теплоотвода

Чаще всего для этих целей используется алюминий. Теплопроводность этого металла составляет от 200 до 240 Вт/(м·K), что почти в 3 раза превышает этот же показатель стали. Кроме того, алюминий удобен для обработки и выгоден по стоимости.

Реже для изготовления радиатора используется медь. Теплопроводность меди составляет 400 Вт/(м·K) и уступает только серебру. Но медные радиаторы встречаются редко. Дело в том, что этот металл значительно выше по стоимости, чем алюминий, к тому же он сложен в механической обработке и имеет большую массу. Соответственно, если использовать медный радиатор, конечная стоимость светильника сильно возрастет, что не на руку производителю. В качестве материала радиатора для охлаждения светодиодных ламп может использоваться керамика.

Теплопроводность керамики составляет 175–235 Вт/(м·K). Показатель неплохой, но этот материал встречается нечасто — буквально у нескольких моделей светодиодных ламп. В недорогих светодиодных лампах можно встретить радиатор из термопластика. Теплопроводность термопластика составляет от 5 до 40 Вт/(м·K), что намного ниже, чем теплопроводность алюминия или керамики, тем не менее, у него есть некоторые преимущества. Термопластик очень легок и имеет низкую стоимость. Но не стоит его использовать для охлаждения ламп мощнее 10 Вт и уж тем более светильников. Термопластик просто не справится с теплоотводом.

Система охлаждения источника света

Рассчитать площадь охлаждающего элемента для светодиодного светильника можно двумя способами: проектным и поверочным. Проектный способ заключается в том, что размер радиатора рассчитывается исходя из тепловой мощности охлаждаемого прибора. Поверочный способ основан на обратном действии: зная размеры радиатора, просчитывается, какую тепловую мощность он может рассеять. Выбор способа расчета и формы радиатора происходит отдельно в каждом конкретном случае, но это всегда точные математические расчеты, подкрепленные графиками. Кроме того, рассчитывается не только размер охлаждающего элемента, но и направленность теплоотвода.

Для охлаждения светодиодных светильников SDSBET используются алюминиевые радиаторы. Использование именно этого материала позволяет обеспечивать эффективный теплоотвод от светодиодного модуля и при этом поддерживать оптимальную стоимость светильников. Радиаторы могут выглядеть по-разному, но внешний вид не влияет на функциональность. Наоборот, для каждого конкретного светильника просчитан и разработан свой вариант радиатора, который обеспечивает наиболее эффективный теплоотвод.

Стоит отметить, что не в каждом светильнике радиатор явно выражен. Это определяется особенностями конструкции и мощностью осветительного прибора. Например, светильник малой мощности до 40 Вт в стальном корпусе хорошо отводит тепло самим корпусом, если светодиоды расположены на алюминиевой плате. К таким светильникам производства SDSBET относятся многие офисные светильники, светильники серии «Ритейл», светодиодные панели, некоторые ЖКХ-светильники.

Теперь вы знаете, что такое радиатор в светодиодном светильнике и зачем он нужен, и сможете применять свои знания при выборе светодиодного оборудования, чтобы не попасть в неприятную ситуацию из-за светильника ненадлежащего качества.

Источник

Радиаторы для светодиодов: расчет площади, выбор материала, изготовление своими руками

Заявленный срок службы светодиодов исчисляется десятками тысяч часов. Чтобы достичь столь высокого показателя, не ухудшив при этом оптические характеристики, мощные светодиоды необходимо использовать в паре с радиатором. Данная статья позволит читателю найти ответы на вопросы, связанные с расчётом и выбором радиатора, их модификациями и факторами, влияющими на отвод тепла.

А зачем он нужен?

Наравне с другими полупроводниковыми приборами светодиод не является идеальным элементом со 100% коэффициентом полезного действия (КПД). Большая часть потребляемой им энергии рассеивается в тепло. Точное значение КПД зависит от типа излучающего диода и технологии его изготовления. Эффективность слаботочных светодиодов составляет 10-15%, а у современных белых мощностью более 1 Вт её значение достигает 30%, а значит, остальные 70% расходуются в тепло.

Каким бы ни был светодиод, для стабильной и продолжительной работы ему необходим постоянный отвод тепловой энергии от кристалла, то есть радиатор. В слаботочных led функцию радиатора выполняют выводы (анод и катод). Например, в SMD 2835 вывод анода занимает почти половину нижней части элемента. В мощных светодиодах абсолютная величина рассеиваемой мощности на несколько порядков больше. Поэтому нормально функционировать без дополнительного теплоотвода они не могут. Постоянный перегрев светоизлучающего кристалла в разы снижает срок службы полупроводникового прибора, способствует плавной потере яркости со смещением рабочей длины волны.

Конструктивно все радиаторы можно разделить на три большие группы: пластинчатые, стержневые и ребристые. Во всех случаях основание может иметь форму круга, квадрата или прямоугольника. Толщина основания имеет принципиальное значение при выборе, так как именно этот участок несёт ответственность за приём и равномерное распределение тепла по всей поверхности радиатора.

На форм-фактор радиатора оказывает влияние будущий режим работы:

  • с естественной вентиляцией;
  • с принудительной вентиляцией.

Радиатор охлаждения для светодиодов, который будет использоваться без вентилятора, должен иметь расстояние между рёбрами не менее 4 мм. В противном случае естественной конвекции не хватит для успешного отвода тепла. Ярким примером служат системы охлаждения компьютерных процессоров, где за счёт мощного вентилятора расстояние между рёбрами уменьшено до 1 мм.

При проектировании светодиодных светильников большое значение уделяется их внешнему виду, что оказывает огромное влияние на форму теплоотвода. Например, система отвода тепловой энергии светодиодной лампы не должна выходить за рамки стандартной грушевидной формы. Этот факт вынуждает разработчиков прибегать к различным ухищрениям: использовать печатные платы с алюминиевой основой, соединяя их с корпусом-радиатором при помощьи термоклея.

Материалы изготовления радиаторов

В настоящее время охлаждение мощных светодиодов производят преимущественно на радиаторах из алюминия. Такой выбор обусловлен лёгкостью, низкой стоимостью, податливостью в обработке и хорошими теплопроводящими свойствами этого металла. Монтаж медного радиатора для светодиода оправдан в светильнике, где первостепенное значение имеют размеры, так как медь в два раза лучше рассеивает тепло, чем алюминий. Свойства материалов, которые наиболее часто используются для охлаждения мощных светодиодов, рассмотрим более детально.

Алюминиевые

Коэффициент теплопроводности алюминия находится в пределах 202–236 Вт/м*К и зависит от чистоты сплава. По этому показателю он в 2,5 раза превосходит железо и латунь. Кроме этого, алюминий поддаётся разным видам механической обработки. Для увеличения теплоотводящих свойств алюминиевый радиатор анодируют (покрывают в чёрный цвет).

Медные

Теплопроводность меди составляет 401 Вт/м*К, уступая среди других металлов лишь серебру. Тем не менее медные радиаторы встречаются намного реже алюминиевых, что обусловлено наличием ряда недостатков:

  • высокая стоимость меди;
  • сложная механическая обработка;
  • большая масса.

Применение медной охлаждающей конструкции ведёт к увеличению себестоимости светильника, что недопустимо в условиях жёсткой конкуренции.

Керамические

Новым решением в создании высокоэффективных теплоотводов стала алюмонитридная керамика, теплопроводность которой составляет 170–230 Вт/м*К. Этот материал отличается низкой шероховатостью и высокими диэлектрическими свойствами.

С применением термопластика

Несмотря на то что свойства теплопроводных пластмасс (3–40 Вт/м*К) хуже, чем у алюминия, их главными преимуществами являются низкая себестоимость и лёгкость. Многие производители светодиодных ламп используют термопластик для изготовления корпуса. Однако термопластик проигрывает конкуренцию металлическим радиаторам в проектировании светодиодных светильников мощностью более 10 Вт.

Особенности охлаждения мощных светодиодов

Как указывалось ранее, обеспечить эффективный отвод тепла от светодиода можно при помощи организации пассивного или активного охлаждения. Светодиоды мощностью потребления до 10 вт целесообразно устанавливать на алюминиевые (медные) радиаторы, так как их массогабаритные показатели будут иметь приемлемые значения.

Применение пассивного охлаждения для светодиодных матриц мощностью 50 Вт и более становится затруднительным; размеры радиатора составят десятки сантиметров, а масса возрастёт до 200-500 грамм. В этом случае стоит задуматься о применении компактного радиатора вместе с небольшим вентилятором. Этот тандем позволит снизить массу и размеры системы охлаждения, но создаст дополнительные трудности. Вентилятор необходимо обеспечить соответствующим напряжением питания, а также позаботиться о защитном отключении светодиодного светильника в случае поломки кулера.

Существует ещё один способ охлаждения мощных светодиодных матриц. Он состоит в применении готового модуля SynJet, который внешне напоминает кулер для видеокарты средней производительности. Модуль SynJet отличается высокой производительностью, тепловым сопротивлением не больше 2 °C/Вт и массой до 150 г. Его точные размеры и вес зависят от конкретной модели. К недостаткам стоит отнести необходимость в источнике питания и высокую стоимость. В результате получается, что светодиодную матрицу в 50 Вт нужно крепить либо на громоздкий, но дешёвый радиатор, либо на маленький радиатор с вентилятором, блоком питания и системой защиты.

Каким бы ни был радиатор, он способен обеспечить хороший, но не самый лучший тепловой контакт с подложкой светодиода. Для снижения теплового сопротивления на контактируемую поверхность наносят теплопроводящую пасту. Эффективность её воздействия доказана повсеместным применением в системах охлаждения компьютерных процессоров. Качественная термопаста устойчива к затвердеванию и обладает низкой вязкостью. При нанесении на радиатор (подложку) достаточно одного тонкого ровного слоя на всей площади соприкосновения. После прижима и фиксации толщина слоя составит около 0,1 мм.

Расчет площади радиатора

Существуют два метода расчёта радиатора для светодиода:

  • проектный, суть которого состоит в определении геометрических размеров конструкции при заданном температурном режиме;
  • поверочный, который предполагает действовать в обратной последовательности, то есть при известных параметрах радиатора можно рассчитать максимальное количество теплоты, которую он способен эффективно рассеивать.

Применение того или иного варианта зависит от имеющихся исходных данных. В любом случае точный расчёт – это сложная математическая задача с множеством параметров. Кроме умения пользоваться справочной литературой, брать необходимые данные из графиков и подставлять их в соответствующие формулы, следует учитывать конфигурацию стержней или рёбер радиатора, их направленность, а также влияние внешних факторов. Также стоит учитывать и качество самих светодиодов. Зачастую в светодиодах китайского производства реальные характеристики расходятся с заявленными.

Точный расчёт

Прежде чем перейти к формулам и расчётам, необходимо ознакомиться с основными терминами в области распространения тепловой энергии. Теплопроводность представляет собой процесс передачи тепловой энергии от более нагретого физического тела к менее нагретому. Количественно теплопроводность выражается в виде коэффициента, который показывает, сколько теплоты способен передать материал через единицу площади при изменении температуры на 1°K. В светодиодных светильниках все части, задействованные в обмене энергии, должны обладать высокой теплопроводностью. В частности это касается передачи энергии от кристалла к корпусу, а затем к радиатору и воздуху.

Конвекция – тоже процесс передачи тепла, который происходит за счёт движения молекул жидкостей и газов. Применительно к светодиодным светильникам принято рассматривать обмен энергией между радиатором и воздухом. Это может быть естественная конвекция, происходящая за счет естественного перемещения воздушного потока, или принудительная, организованная за счёт установки вентилятора.

В начале статьи указывалось, что около 70% потребляемой светодиодом мощности расходуется в тепло. Чтобы рассчитать радиатор для светодиодов, необходимо знать точное количество рассеиваемой энергии. Для этого воспользуемся формулой:

PТ – мощность, выделяемая в виде тепла, Вт;
k – коэффициент, учитывающий процент энергии, переходящей в тепло. Это величина для мощных светодиодов принимается равной 0,7-0,8;
UПР – прямое падение напряжения на светодиоде при протекании номинального тока, В;
IПР – номинальный ток, А.

Пришло время посчитать количество препятствий, расположенных на пути прохождения теплового потока от кристалла к воздуху. Каждое препятствие представляет собой тепловое сопротивление (termal resistance), обозначаемое символом (Rθ, градус/Вт). Для наглядности всю систему охлаждения представляют в виде схемы замещения из последовательно-параллельного включения тепловых сопротивлений

jc – тепловое сопротивление p-n-переход-корпус (junction-case);
cs – тепловое сопротивление корпус-радиатор (case-surfase radiator);
sa– тепловое сопротивление радиатор-воздух (surfase radiator-air).

Если предполагается устанавливать светодиод на печатную плату или использовать термопасту, то также нужно учесть их тепловые сопротивления. На практике значение Rθsa можно определить двумя способами.

ja – сопротивление p-n-переход-воздух;
Tj – максимальная температура p-n-перехода (справочный параметр), °C;
Ta – температура воздуха вблизи радиатора, °C.

Найти из графика «зависимость максимального теплового сопротивления от прямого тока».

По известному Rθsa выбирают стандартный радиатор. При этом паспортное значение теплового сопротивления должно быть немного меньше расчетного.

Приблизительная формула

Многие радиолюбители привыкли использовать в своих самоделках радиаторы, оставшиеся от старой электронной аппаратуры. При этом они не желают углубляться в сложные вычисления и покупать дорогие новинки импортного производства. Как правило, их интересует один только вопрос: «Какую мощность может рассеять имеющийся в наличии алюминиевый радиатор для светодиодов?»

Предлагаем воспользоваться простой эмпирической формулой, позволяющей получить приемлемый результат расчёта: Rθsa=50/√S, где S – площадь поверхности радиатора в см 2 .

Подставляя в данную формулу известное значение суммарной площади теплоотвода с учетом поверхности рёбер (стержней) и боковых граней, получаем его тепловое сопротивление.

Допустимую мощность рассеивания находим из формулы: Pт=(Tj-Ta)/Rθja.

Приведенный расчёт не учитывает много нюансов, влияющих на качество работы всей охлаждающей системы (направленность радиатора, температурные характеристики светодиода и пр.). Поэтому полученный результат рекомендуется умножать на коэффициент запаса – 0,7.

Радиатор для светодиода своими руками

Сделать алюминиевый радиатор для светодиодов 1, 3 или 10 Вт своими руками несложно. Сначала рассмотрим простую конструкцию, на изготовление которой потребуется около полчаса времени и круглая пластина толщиною 1-3 мм. По окружности через каждые 5 мм делают надрезы к центру, а получившиеся сектора слегка загибают, чтобы готовая конструкция напоминала крыльчатку. Для крепления радиатора к корпусу в нескольких секторах делают отверстия. Немного сложнее сделать самодельный радиатор для 10 ваттного светодиода. Для этого понадобиться 1 метр алюминиевой полосы шириной 20 мм и толщиной 2 мм. Сначала полосу распиливают ножовкой на 8 равных частей, которые затем складывают стопкой, просверливают насквозь и стягивают болтом с гайкой. Одну из боковых граней шлифуют под крепление светодиодной матрицы. С помощью стамески полосы разгибают в разные стороны. В местах крепления светодиодного модуля сверлят отверстия. На отшлифованную поверхность наносят термоклей, сверху прикладывают матрицу, фиксируя её саморезами.

Дешевые теплоотводчики для любительских самооделок

Специально для радиолюбителей, которые любят экспериментировать с разными материалами для отвода тепла и при этом не хотят тратить деньги на дорогостоящие готовые изделия, дадим несколько рекомендаций по поиску и изготовлению радиаторов своими руками. Для охлаждения светодиодных лент и линеек прекрасно подойдёт мебельный профиль из алюминия. Это могут быть направляющие для шкафов-купе или кухонная фурнитура, остатки которой можно купить по себестоимости в мебельном магазине.

Для охлаждения светодиодных матриц 3-10 Вт подойдут радиаторы из советских магнитофонов и усилителей, которых более чем достаточно на радиорынках каждого города. Также можно использовать запчасти от старой оргтехники.

Самодельное охлаждение для 50 Вт светодиода можно сделать из радиатора от неисправной бензопилы, газонокосилки, распилив его на несколько частей. Купить такие запчасти можно в ремонтных мастерских по цене лома. Конечно, про эстетические качества светодиодного светильника в этом случае можно забыть.

Источник

Оцените статью