Зависимость температуры плавления льда от времени при нагревании

§ 14. График плавления и отвердевания кристаллических тел

Плавление кристаллического тела — сложный процесс. Для его изучения рассмотрим график зависимости температуры кристаллического тела (льда) от времени его нагревания (рис. 18). На нём по горизонтальной оси отложено время, а по вертикальной — температура льда.

Рис. 18. График зависимости температуры льда от времени нагревания

Из графика видно, что наблюдение за процессом началось с момента, когда температура льда была -40 °С. При дальнейшем нагревании температура льда росла. На графике это участок АВ. Увеличение температуры происходило до 0 °С — температуры плавления льда. При 0 °С лёд начал плавиться, а его температура перестала расти. В течение всего времени плавления температура льда не менялась, хотя горелка продолжала гореть. Этому процессу соответствует горизонтальный участок графика — ВС.

После того как весь лёд расплавился и превратился в воду, температура снова стала подниматься (участок CD). Когда температура достигла +40 °С (точка D), горелка была погашена. Как видно из графика, температура воды после этого начала снижаться (участок DE). Вода стала охлаждаться. Когда её температура упала до 0 °С, начался процесс отвердевания воды — её кристаллизация, и пока вся вода не отвердеет, температура её не изменится (участок EF). Лишь после этого температура твёрдой воды — льда стала уменьшаться (участок FK).

Вопросы

  1. Пользуясь графиком (см. рис. 18) и текстом, относящимся к нему, объясните, что происходит с водой в отрезки времени, соответствующие каждому из участков графика.
  2. Как по графику можно судить об изменении температуры вещества при нагревании и охлаждении?
  3. Какие участки графика соответствуют плавлению и отвердеванию льда? Почему эти участки параллельны оси времени?
Читайте также:  Самые удобные прогулочные коляски от 6 месяцев для зимы

Задание

Начертите график плавления меди. По вертикали отложите температуру (1 клетка — 20 °С), а по горизонтали — время (1 клетка — 10 мин). Начальная температура меди равна 1000 °С, время нагревания до температуры плавления 20 мин, время перехода меди в жидкое состояние 30 мин.

Это любопытно.

Аморфные тела. Плавление аморфных тел

Существует особый вид тел, который принято также называть твёрдыми телами. Это аморфные тела. В естественных условиях они не обладают правильной геометрической формой.

К аморфным телам относятся: твёрдая смола (вар, канифоль), стекло, сургуч, эбонит, различные пластмассы.

По многим физическим свойствам, да и по внутреннему строению аморфные тела стоят ближе к жидкостям, чем к твёрдым телам.

Кусок твёрдой смолы от удара рассыпается на осколки, т. е. ведёт себя как хрупкое тело, но вместе с тем обнаруживает и свойства, присущие жидкостям. Твёрдые куски смолы, например, медленно растекаются по горизонтальной поверхности, а находясь в сосуде, со временем принимают его форму. По описанным свойствам твёрдую смолу можно рассматривать как очень густую и вязкую жидкость.

Аморфное тело — смола

Стекло обладает значительной прочностью и твёрдостью, т. е. свойствами, характерными для твёрдого тела. Однако стекло, хотя и очень медленно, способно течь, как смола.

В отличие от кристаллических тел, в аморфных телах атомы или молекулы расположены беспорядочно, как в жидкостях.

Кристаллические твёрдые тела, как мы видели (см. рис. 18), плавятся и отвердевают при одной и той же строго определённой для каждого вещества температуре. Иначе ведут себя аморфные вещества, например смола, воск, стекло. При нагревании они постепенно размягчаются, разжижаются и, наконец, превращаются в жидкость. Температура их при этом изменяется непрерывно. При отвердевании аморфных тел температура их также понижается непрерывно.

В аморфных твёрдых телах, как и в жидкостях, молекулы могут свободно перемещаться друг относительно друга. При нагревании аморфного тела скорость движения молекул увеличивается, увеличиваются расстояния между молекулами, а связи между ними ослабевают. В результате аморфное тело размягчается, становится текучим.

Зная строение аморфных тел, можно создавать материалы с заданными свойствами. В последние годы аморфные тела находят широкое применение при производстве считывающих головок аудио- и видеомагнитофонов, устройств записи и хранения информации в компьютерной технике, магнитных экранов и др.

Источник

График плавления

Одно и тоже вещество в реальном мире в зависимости от окружающих условий может находиться в различных состояниях. Например, вода может быть в виде жидкости, в идее твердого тела – лед, в виде газа – водяной пар.

  • Эти состояния называются агрегатными состояниями вещества.

Молекулы вещества в различных агрегатных состояниях ничем не отличаются друг от друга. Конкретное агрегатное состояние определяется расположением молекул, а так же характером их движения и взаимодействия между собой.

Газ – расстояние между молекулами значительно больше размеров самих молекул. Молекулы в жидкости и в твердом теле расположены достаточно близко друг к другу. В твердых телах еще ближе.

Чтобы изменить агрегатное состояние тела, ему необходимо сообщить некоторую энергию. Например, чтобы перевести воду в пар её надо нагреть.Чтобы пар снова стал водой, он должен отдать энергию.

Переход из твердого состояния в жидкое

Переход вещества из твердого состояние в жидкое называется плавлением. Для того чтобы тело начало плавиться, его необходимо нагреть до определенной температуры. Температура, при которой вещество плавится, называют температурой плавления вещества.

Каждое вещество имеет свою температуру плавления. У каких-то тел она очень низкая, например, у льда. А у каких-то тел температура плавления очень высокая, например, железо. Вообще, плавление кристаллического тела это сложный процесс.

График плавления льда

Ниже на рисунке представлен график плавления кристаллического тела, в данном случае льда.

  • График показывает зависимость температуры льда от времени, которое его нагревают. На вертикально оси отложена температура, по горизонтальной — время.

Из графика, что изначально температура льда была -20 градусов. Потом его начали нагревать. Температура начала расти. Участок АВ это участок нагревания льда. С течением времени, температура увеличилась до 0 градусов. Эта температура считается температурой плавления льда. При этой температуре лед начал плавиться, но при этом перестала возрастать его температура, хотя при этом лед также продолжали нагревать. Участку плавления соответствует участок ВС на графике.

Затем, когда весь лед расплавился и превратился в жидкость, температура воды снова стала увеличиваться. Это показано на графике лучом C. То есть делаем вывод, что во время плавления температура тела не изменяется, вся поступающая энергия идет на плвление.

Источник

Плавление и кристаллизация

1. Плавлением называется процесс превращения вещества из твёрдого состояния в жидкое.

Наблюдения показывают, что если измельчённый лёд, имеющий, например, температуру -10 °С, оставить в тёплой комнате, то его температура будет повышаться. При 0 °С лёд начнет таять, а температура при этом не будет изменяться до тех пор, пока весь лёд не превратится в жидкость. После этого температура образовавшейся изо льда воды будет повышаться.

Это означает, что кристаллические тела, к которым относится и лед, плавятся при определённой температуре, которую называют температурой плавления. Важно, что во время процесса плавления температура кристаллического вещества и образовавшейся в процессе его плавления жидкости остаётся неизменной.

2. В описанном выше опыте лёд получал некоторое количество теплоты, его внутренняя энергия увеличивалась за счёт увеличения средней кинетической энергии движения молекул. Затем лёд плавился, его температура при этом не менялась, хотя лёд получал некоторое количество теплоты. Следовательно, его внутренняя энергия увеличивалась, но не за счёт кинетической, а за счёт потенциальной энергии взаимодействия молекул. Получаемая извне энергия расходуется на разрушение кристаллической решетки. Подобным образом происходит плавление любого кристаллического тела.

Аморфные тела не имеют определённой температуры плавления. При повышении температуры они постепенно размягчаются, пока не превратятся в жидкость.

3. Процесс перехода вещества из жидкого состояния в твёрдое состояние называют кристаллизацией. Охлаждаясь, жидкость будет отдавать некоторое количество теплоты окружающему воздуху. При этом будет уменьшаться её внутренняя энергия за счёт уменьшения средней кинетической энергии его молекул. При определённой температуре начнётся процесс кристаллизации, во время этого процесса температура вещества не будет изменяться, пока всё вещество не перейдет в твёрдое состояние. Этот переход сопровождается выделением определённого количества теплоты и соответственно уменьшением внутренней энергии вещества за счёт уменьшения потенциальной энергии взаимодействия его молекул.

Таким образом, переход вещества из жидкого состояния в твёрдое состояние происходит при определённой температуре, называемой температурой кристаллизации. Эта температура остаётся неизменной в течение всего процесса плавления. Она равна температуре плавления этого вещества.

На рисунке 76 приведён график зависимости температуры твёрдого кристаллического вещества от времени в процессе его нагревания от комнатной температуры до температуры плавления (АБ), плавления (БВ), нагревания вещества в жидком состоянии (ВГ), охлаждения жидкого вещества (ГД), кристаллизации (ДЕ) и последующего охлаждения вещества в твёрдом состоянии (ЕЖ).

4. Различные кристаллические вещества имеют разное строение. Соответственно, для того, чтобы разрушить кристаллическую решётку твёрдого тела при температуре его плавления, необходимо ему сообщить разное количество теплоты.

Количество теплоты, которое необходимо сообщить 1 кг кристаллического вещества, чтобы превратить его в жидкость при температуре плавления, называют удельной теплотой плавления.

Опыт показывает, что удельная теплота плавления равна удельной теплоте кристаллизации.

Удельную теплоту плавления обозначают буквой ​ \( \lambda \) ​. Единица удельной теплоты плавления — ​ \( [\lambda] \) ​ = 1 Дж/кг.

Значения удельной теплоты плавления кристаллических веществ приведены в таблице. Удельная теплота плавления алюминия 3,9·10 5 Дж/кг. Это означает, что для плавления 1 кг алюминия при температуре плавления необходимо затратить количество теплоты 3,9·10 5 Дж. Этому же значению равно увеличение внутренней энергии 1 кг алюминия.

Чтобы вычислить количество теплоты ​ \( Q \) ​, необходимое для плавления вещества массой ​ \( m \) ​, взятого при температуре плавления, следует удельную теплоту плавления ​ \( \lambda \) ​ умножить на массу вещества: ​ \( Q=\lambda m \) ​.

Эта же формула используется при вычислении количества теплоты, выделяющегося при кристаллизации жидкости.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. В процессе плавления кристаллическое твёрдое тело становится жидкостью. При этом

1) уменьшается внутренняя энергия тела
2) увеличивается средняя кинетическая энергия молекул
3) увеличивается внутренняя энергия тела
4) уменьшается средняя кинетическая энергия молекул

2. В одном сосуде находится лёд при температуре 0 °С, в другом — такая же масса воды при температуре 0 °С. Внутренняя энергия льда

1) равна внутренней энергии воды
2) больше внутренней энергии воды
3) меньше внутренней энергии воды
4) равна нулю

3. На рисунке представлен график зависимости температуры от времени для процесса нагревания льда. Процессу плавления льда соответствует участок графика

1) AB
2) BC
3) CD
4) DE

4. На рисунке приведён график зависимости температуры некоторого вещества от времени. Первоначально вещество находилось в жидком состоянии. Какая точка графика соответствует началу процесса отвердевания вещества?

5. На рисунке приведён график зависимости температуры некоторого вещества от времени. Первоначально вещество находилось в жидком состоянии. Какая точка графика соответствует окончанию процесса отвердевания вещества?

6. На рисунке изображён график зависимости температуры тела от времени. Первоначально тело находилось в жидком состоянии. Какой процесс характеризует отрезок БВ?

1) нагревание
2) охлаждение
3) плавление
4) кристаллизацию

7. На рисунке представлен график зависимости температуры ​ \( t \) ​ от времени ​ \( \tau \) ​ при непрерывном нагревании и последующем непрерывном охлаждении вещества, первоначально находящегося в твёрдом состоянии. В каком состоянии находится вещество в точке Е?

1) только в жидком
2) только в твёрдом
3) только в газообразном
4) часть — в жидком, часть — в твёрдом

8. Удельную теплоту плавления можно рассчитать по формуле

9. Чему равно количество теплоты, которое необходимо затратить на полное превращение 2 кг свинца в жидкое состояние, если его начальная температура 27 °С?

1) 50 кДж
2) 78 кДж
3) 128 кДж
4) 15000 кДж

10. Какое количество теплоты выделяется при превращении 500 г воды, взятой при 0 °С, в лёд при температуре -10 °С? Потерями энергии на нагревание окружающего воздуха пренебречь.

1) 10500 Дж
2) 175 500 Дж
3) 165 000 Дж
4) 10500 Дж

11. На рисунке представлен график зависимости температуры некоторого вещества от полученного количества теплоты. Первоначально вещество находилось в твёрдом состоянии.

Используя данные графика, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Удельная теплоёмкость вещества в твёрдом состоянии равна удельной теплоёмкости вещества в жидком состоянии.
2) Температура кипения вещества равна tx.
3) В точке В вещество находится в твёрдом состоянии.
4) В процессе перехода из состояния Б в состояние В внутренняя энергия вещества увеличивается.
5) Участок графика ГД соответствует процессу плавления вещества.

12. На рисунке представлены графики зависимости температуры от полученного количества теплоты для двух веществ одинаковой массы. Первоначально каждое из веществ находилось в твёрдом состоянии.

Используя данные графиков, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) Удельная теплоёмкость первого вещества в твёрдом состоянии меньше удельной теплоёмкости второго вещества в твёрдом состоянии.
2) В процессе плавления первого вещества было израсходовано большее количество теплоты, чем в процессе плавления второго вещества.
3) Представленные графики не позволяют сравнить температуры кипения двух веществ.
4) Температура плавления второго вещества выше.
5) Удельная теплота плавления у второго вещества больше.

Часть 2

13. Зависимость температуры 1 л воды от времени при непрерывном охлаждении представлена на графике. Какое количество теплоты выделилось при кристаллизации воды и охлаждении льда?

Источник

Оцените статью