Зимой что происходит с металлом

Технология восстановления формы деталей

При охлаждении металл сжимается, его объем уменьшается, но удерживается расположенным вокруг металлом, длина и ширина которого не изменялась. Необходимо, чтобы дополнительное утолщение, полученное при растяжении металла, было восстановлено после охлаждения. Но так как металл имеет температуру, не соответствующую максимальной пластичности, то, сжимаясь, он поглощает небольшую часть удлинения окружающего металла.

Усиление осаживания металла осуществляется различными способами:

уменьшением скорости распространения теплоты путем создания кольца вокруг нагретой части металла из мокрой ветоши;

противодействием деформации путем нажатия на металл ручкой молотка или другим предметом около нагретой точки;

выстукиванием границ точки металла, нагретого докрасна, а затем и самой нагретой точки киянкой или рихтовочным молотком.

Наибольшее применение имеет последний способ.

Рассмотрим порядок выполнения технологических операций рихтовки различными способами.

При рихтовке нагреванием и выстукиванием горелку быстро подводят к центру пузыря, прогревают его и горелку отводят, когда разогретое докрасна пятно достигнет диаметра, равного максимум 12 мм.

При нагреве необходимо следить, чтобы металл не начал плавиться. Если нагретое пятно будет большего диаметра, это вызовет гораздо большую усадку, чем надо. Если работа выполняется в одиночку, то горелку откладывают, под лист (почти под дефект) помещают наковаленку. Быстро выстукивают не покрасневший металл вокруг нагретой точки, а затем и нагретую точку, пока металл еще остается темно-красным.

Обработку предпочтительнее вести деревянной киянкой. При рихтовке молотком-гладилкой сила удара должна быть небольшой, чтобы не создать растяжения металла вместо усаживания.

Если пузырь небольшой, то достаточно провести обработку одной точки.

Работу можно считать завершенной только тогда, когда металл остынет до температуры окружающей среды. Для ускорения охлаждения применяют мокрую ветошь или пропитанную водой губку. Если необходимы дополнительные точечные нагревы, то их делают не более двух-трех между каждым охлаждением. Их располагают вокруг центральной точки.

После охлаждения нагретого листа проводят легкую рихтовку прогретого сектора, чтобы выровнять поверхность металла, которая имела до этого деформацию.

Расположение точек усадки зависит от формы пузыря. Если пузырь круглый, то точки располагаются по радиусу. Если пузырь длинный и узкий, то точки нагрева располагают узкими рядами.

Подчеркнем, рихтовка с применением точек усадки требует опыта, который приобретается со временем. Легче проводить такие работы на округлых деталях или сильно выпуклых, чем на почти плоских панелях или панелях с малой выпуклостью. Трудность заключается в восстановлении точной длины металла. Разгонять пузырь необходимо как можно осторожнее, так как рихтовка вызывает удлинение металла, которое должно обеспечить желаемую длину металла. Стоит только нанести несколько сильных ударов, как образуется новый пузырь. В то же время, если нанесено меньшее, чем необходимо, количество ударов, то неопытному может показаться, что металл вокруг пузыря слишком вытянут. Он будет пытаться устранить это точками усадки и выполнять их в большем количестве для достижения малоуловимого равновесия металла, чем опытный жестянщик.

Рассмотрим другой способ устранения пузыря — путем наложения влажного охлаждающего кольца. Он осуществляется следующим образом. Смоченную в воде ветошь располагают вокруг нагреваемой точки, что затрудняет распространение теплоты и, как следствие, уменьшает деформацию, предшествующую нагреву металла докрасна. При этом металл получает большую усадку, чем без предварительного охлаждения, но меньшую по сравнению с применением выколотки.

Вместо ветоши можно использовать пасту. Паста выполняет такую же роль, что и влажное кольцо из ветоши, но действие оказывает более сильное.

При этом способе нагрев деформированной детали осуществляется пропусканием электрического тока большой силы и низкого напряжения. Вспомним, что точечная сварка легко нагревает докрасна металл, сжатый двумя электродами. Общий принцип действия всех промышленных аппаратов точечной сварки заключается в быстром местном нагреве металла, находящегося в контакте с угольным электродом, установленным в держателе. В зависимости от типа держателя и различной установки электродов сварка может осуществляться точками, прямыми строчками, кривыми строчками. Один провод подводит напряжение к держателю электрода, а второй соединяет лист с массой.

Для устранения пузыря этим способом проводят подготовительные работы. Сначала выправляют деформированную часть с помощью обычных инструментов. Если вмятины небольшие, можно обойтись без правки. С мест обработки удаляют краску (она является изолятором). Операция может выполняться как вручную шабером, так и шлифовальной машинкой. Зачищают также место соединения с массой.

Источник

Зимой что происходит с металлом

Сталь и холод

В Якутии -65°С не редкость. Здесь сталь проходит испытание холодом. Зимой по обочинам дорог можно увидеть разбитые, точно глиняные черепки, стальные муфты, полуоси и другие детали машин или бульдозерный нож, расколотый пополам от удара о пенек. Недаром здешние шоферы знают наизусть чуть не все сорта стали и резины, какие выпускает наша промышленность.

Число поломок оборудования зимой в условиях Крайнего Севера обычно втрое, автосцепок иногда в десять раз больше, чем летом. Сталь не выдерживает низких температур; она становится хрупкой.

За счет охрупчивания металла при пониженных температурах произошли крупные аварии, которые вызвали разрушение железнодорожных мостов в Бельгии, ФРГ и Канаде, крупных резервуаров для хранения нефти, разрушение грузовых судов и газопроводов.

Советские ученые и инженеры приняли активное участие в решении проблемы. Действительно, обычное железо и некоторые сорта стали при температурах до -40 °С, наиболее характерных для районов Арктики и Сибири, становятся хрупкими и трескаются. Появились рекомендации специалистов о подготовке особых марок стали. Исследования показали, например, что добавка циркония позволит ликвидировать хрупкость стали при сильных морозах. Можно создавать такие стали, которые при низких температурах сохранят прочность.

Сталь, которой не страшны морозы, производят на Череповецком металлургическом заводе по методу, разработанному профессором Ленинградского механического института С. М. Барановым. Она используется для изготовления труб газопроводов, которые прокладываются в Заполярье. Морозостойкую сталь назвали «Северянкой».

Современная техника широко использует низколегированные стали. Однако при низких температурах ее пластичность резко ухудшается. Она делается хрупкой, плохо выдерживает удары, что ведет к частым поломкам на транспорте, работающем в северных районах.

Решением задачи создать высокопрочную и одновременно высокопластичную сталь, не теряющую своих свойств при низких температурах, занялись сотрудники Донецкого государственного университета и Уральского научно-исследовательского института черных металлов при участии работников Уральского вагоностроительного завода. Им удалось создать высокопрочную и пластичную сталь, пригодную для изготовления ходовой части и автосцепки грузовых вагонов. Этому помогли добавки ванадия.

Для арктических широт нашего Крайнего Севера теперь готовится специальное оборудование в «северном исполнении»: экскаваторы, вездеходы-амфибии, грузовики КамАЗа, стальные резервуары емкостью 20- 50 тыс. м 3 .


Сталь и холод

Без широкого применения холодильной техники не обходятся современная торговля и медицина, нефтехимия и транспорт. Есть оригинальное предложение использовать жидкий азот для металлических отходов в сталеплавильных цехах. Перед тем как отправить в печь на переплавку крупногабаритный стальной лом, его необходимо размельчать. Ученые ГДР предложили заливать металлические отходы жидким азотом.

Охлажденный до-100°С металл становится хрупким, как стекло и легко разбивается на куски.

Некоторые процессы в технике проходят при очень низких температурах, и для них нужна специальная аппаратура. Сюда относятся процессы сжижения и разделения воздуха, сжижения и фракционной перегонки нефтяных продуктов, сжижение природного газа. Для изготовления аппаратуры, емкостей и трубопроводов требуются стали, вязкие при низких температурах. Химическая промышленность нуждается в шаровых резервуарах для хранения сжиженных газов — пропан-бутановой смеси, аммиака и др.

Металлурги готовят и такие стали: в их состав входит много легирующих элементов. Японская фирма «Нихон Кокай» выпускает никелевую сталь, способную сохранять свои свойства при -196°С. Полагают, что она найдет применение в строительстве танкеров и резервуаров для получения и хранения жидких газов.

Однако оказалось, что низкие температуры, столь опасные для прочности обычного металла, можно использовать для улучшения свойств самой стали: повышения твердости и вязкости, жесткости и упругости. Еще в 20-х годах XIX в. П. П. Аносов проводил опыты с закалкой кос при температурах -5 и -18° по Реомюру. Опыты дали положительные результаты.

В наше время применение обработки холодом для дополнительного упрочнения некоторых сталей впервые предложил профессор А. П. Гуляев в 1937 г. Через пять лет первые попытки использовать глубокий холод были произведены в США. Советский академик А. А. Бочвар в 1945 г. обнаружил в зоне фазового превращения металлов «сверхпластичность» сплава цинка с алюминием. Другие исследователи вскоре обнаружили подобные явления у сплавов иных металлов и у некоторых сталей в царстве холода: при -200°С. Изделия получались с идеально чистой поверхностью, которую невозможно достичь никакой механической обработкой. Ибо при любом нагреве, даже самом незначительном, на поверхности металла возникает слой окислов.


Северянка

Исследования в области низкотемпературного материаловедения ведутся в разных странах и сейчас. Ученые Физико-технического института АН УССР доказали теоретически и экспериментально, что постоянное упрочнение можно получить, подвергая металл механической обработке не при нагреве, а при глубоком охлаждении. Специально сконструированная машина позволила производить деформацию образцов при температуре -270°С. Эксперименты помогли выяснить, что при низкотемпературной деформации металлы приобретают очень мелкую и однородную структуру, способствующую значительному повышению жаропрочности вплоть до температуры красного каления.

Источник

Сталь и холод

«Мороз и железо рвет и на лету птицу бьет» — говорит русская пословица.

В Якутии 65 градусов мороза не редкость. Здесь сталь проходит суровое испытание холодом. Зимой по обочинам дорог можно увидеть разбитые, точно глиняные черепки, стальные муфты, полуоси и другие детали машины или бульдозерный нож, расколотый пополам от удара о пенек. Недаром якутские шоферы знают наизусть чуть ли не все сорта стали и резины, какие выпускает наша промышленность.

Число поломок оборудования зимой в условиях Крайнего Севера обычно втрое, автосцепок иногда в десять раз больше, чем летом. Сталь не выдерживает низких температур; она становится хрупкой. По этой причине на Норильском горно-металлургическом комбинате ремонт основных узлов экскаваторов дает убытки, достигающие ежегодно 800 — 900 тыс. руб. А по всей Сибири убытки, вызванные дополнительными затратами на ремонт землеройной техники, превышают 50 млн. руб. в год.

Советские ученые и инженеры приняли активное участие в решении проблемы. Действительно обычное железо и некоторые сорта стали при температурах до — 40 °С, наиболее характерных для районов Арктики и Сибири, становятся хрупкими и трескаются. Появились рекомендации специалистов о подготовке особых марок стали. Исследования показали, что добавка циркония позволяет ликвидировать хрупкость сталей при сильных морозах. Можно будет создать такие марки стали, которые в условиях низких температур будут прочными. Это может дать огромную экономию.

Известно, что при изготовлении оборудования для работы в тропиках учитываются особенности работы металла во влажном климате и при высоких температурах. Для арктических широт Крайнего Севера надо также готовить специальное оборудование. Министр черной металлургии И. П. Казанец в интервью с корреспондентом «Недели» заявил: «Очень важно создать также стали, которые будут прочны, устойчивы и надежны при низких температурах, в так называемом «северном» исполнении. Это необходимо в связи с тем, что мы все более решительно начинаем осваивать Заполярье». Первые шаги в этом направлении уже делаются.

Новое оборудование для работы на Крайнем Севере подвергается испытанию холодом. Так, зимой 1968 г. в бездорожных условиях при лютых морозах на полюсе холода в Якутии проходила междуведомственные испытания прибывшая из Миасса группа мощных грузовиков «Урал-375К». Они были выпущены в опытном порядке специально для работы на Крайнем Севере.

Опытный образец экскаватора под названием «Северянин» вышел из ворот сборочного цеха завода «Рабочий металлист» в Костроме. Само название экскаватора говорит о том, что он предназначен для работы на Крайнем Севере при шестидесятиградусном морозе.

Ковровский завод отправил экскаваторы в специальном «северном» исполнении в Заполярье. Сюда они попали впервые, хотя «ковровцы» успешно работают на различных широтах более чем в 50 странах мира. Новые машины получили полный комплект всепогодной экипировки. Узлы и детали выполнены из особых сортов стали. Экскаваторы оборудованы дополнительной системой обогрева и могут безотказно работать при температуре — 60 °С.

Некоторые процессы в технике проходят при очень низких температурах, и для них нужна специальная аппаратура. Сюда относятся процессы сжижения и разделения воздуха, сжижения и фракционной перегонки нефтяных продуктов, сжижения природного газа. Для изготовления аппаратов, емкостей и трубопроводов требуются вязкие на холоду стали. Химическая промышленность нуждается в шаровых резервуарах для хранения сжиженных газов — пропан-бутановой смеси, аммиака и др.

Металлурги готовят и такие стали; в их состав входит много легирующих элементов. Японская фирма «Нихон Кокаи» выпускает никелевую сталь, способную сохранять свои свойства при температуре — 196 °С. Полагают, что она найдет широкое применение в строительстве танкеров и резервуаров для получения и хранения жидких газов.

Однако оказалось, что низкие температуры, столь опасные для прочности обычного металла, можно использовать для улучшения свойств стали: твердости и вязкости, жесткости и упругости. Еще в конце 20-х годов XIX в. П. П. Аносов проводил опыты с закалкой кос при температурах — 5 и — 18 ° по Реомюру. Опыты дали положительные результаты.

В наше время применение обработки холодом для дополнительного упрочнения некоторых сталей впервые было предложено профессором А. П. Гуляевым в 1937 г. Через пять лет первые попытки использовать глубокий холод были сделаны в США. В наши дни в различных странах проводят исследования в этой области и внедряются в практику методы «холодной» закалки.

Прежде всего обработка холодом оказалась исключительно ценным способом термообработки инструмента, изготовленного из быстрорежущей стали. Так, для большей прочности металла фрезу после обычной закалки охлаждают до — 75 °С, что приводит к повышению режущих свойств стали. Стойкость инструмента, изготовленного из стали Р18, после обработки холодом повышается почти на 50 %.

Было выяснено, что некоторые стали, алюминиевые сплавы и латунь становятся мягче при глубоком охлаждении. Остудив стальной лист жидким азотом, кипящим при — 195 °С, легко можно штамповать из него детали любой сложной формы, с глубокими выемками.

В июне 1968 г. в советской печати сообщалось, что ученые физико-технического института АН УССР доказали теоретически и экспериментально, что постоянное упрочнение можно получить, подвергая металл механической обработке не при нагревании, а при очень глубоком охлаждении. Специально сконструированная машина позволила производить деформацию образцов при температуре около — 270 °С. Эксперименты помогли выяснить, что при низкотемпературной деформации металлы приобретают очень мелкую и однородную структуру, способствующую значительному повышению жаропрочности вплоть до температуры красного каления.

Так холод из врага прочности металла превращается в союзника.

Использована публикация:
Мезенин Н.А. Занимательно о железе. М. «Металлургия», 1972. 200 с.
стр. 152 — 154.

Web-сайт “Термист” (termist.com)
Термомеханическое упрочнение арматурного проката

Отсутствие ссылки на использованный материал является нарушением заповеди «Не укради»

Источник

Читайте также:  Чем дворник колет лед
Оцените статью